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It’s like everyone tells a story about themselves inside their own head.
Always. All the time. That story makes you what you are. We build

ourselves out of that story.

– Patrick Rothfuss, The Name of the Wind





Abstract

Many practically relevant problems in Computational Geometry are provably hard to solve. In this thesis,
we consider a series of these problems and tackle them with techniques from algorithm engineering, e.g.,
mixed integer programming or deep reinforcement learning. Additionally, we provide a number of results
on complexity and algorithms for these problems.

We start with a set of problems occurring in the context of large satellite systems, where communication
requires a rotation of directional antennas. Here, we discover a close relationship to the vertex coloring
problem, use constraint programming to obtain optimal solutions, and provide a practical auction-based
algorithm that achieves good results in a realistic simulation. Then we continue with (partial) coverage path
planning problems involving turn costs, which require different approaches than when minimizing only the
traveled distance. We engineer an approximation algorithm based on linear relaxation and minimum-weight
perfect matching to solve large instances in grid graphs. This approach is then generalized to complex
polygonal instances, which allow modeling of difficult real-world scenarios. Afterward, we focus on probing
a set of trajectories to maximize the captured information, where we successfully apply mixed integer
programming and a set of heuristics. We also consider robots so small they need to be actuated by external
forces like a magnetic field; applications for such robots include cancer treatment. Construction plans for
miniature objects are computed using SAT-solvers, and control sequences to gather a swarm of these robots
are optimized using deep reinforcement learning. Finally, we close the thesis with an excursion in hosting the
CG:SHOP competition for three years and counting.



Zusammenfassung

Viele der praktisch relevanten Probleme in der Computational Geometry sind beweisbar schwer zu lösen.
In dieser Ausarbeitung betrachten wir eine Reihe solcher Probleme und lösen sie mit Techniken aus dem
Algorithm Engineering, z.B., Mixed Integer Programming oder Deep Reinforcement Learning. Zusätzlich
erlangen wir etliche Erkenntnisse zur Komplexität und Algorithmen für diese Probleme.

Wir beginnen mit diversen Problemen, die im Kontext von größeren Satellitensystemen auftreten und bei
denen die Kommunikation das Rotieren von gerichteten Antennen erfordert. Hier entdecken wir einen engen
Zusammenhang zum Graphenfärbungsproblem, nutzen Constraint Programming zur Berechnung von
optimalen Lösungen und entwickeln einen praktischen, auktionsbasierten Algorithmus, der gute Ergebnisse
in realistischen Simulationen erzielt. Danach fahren wir mit dem (Partial) Coverage Path Planning Problem
unter der Berücksichtigung von Abbiegekosten fort, welches andere Ansätze braucht, als wenn wir nur die
gefahrene Distanz minimieren wollen. Hierfür implementieren wir einen Approximationsalgorithmus —
basierend auf linearer Relaxierung und Minimum-Weight Perfect Matching — auf eine Art, die es ermöglicht,
auch große Instanzen im Gittergraphen zu optimieren. Dieser Ansatz wird anschließend von uns für komplexe
polygonale Instanzen erweitert, was die Modellierung von schwierigen, realistischen Szenarien erlaubt.
Anschließend fokussieren wir uns auf die Maximierung von eingeschlossenen Informationen aus einer
Menge von Trajektorien, wo wir erfolgreich Mixed Integer Programming sowie eine Menge von Heuristiken
anwenden. Wir betrachten auch Roboter, die so klein sind, dass sie nur durch äußere Kräfte — wie etwa ein
magnetisches Feld — bewegt werden können und einen potentiellen Einsatz in der Tumorbehandlung haben.
Konstruktionspläne für Miniaturobjekte berechnen wir mittels SAT-Solvern, und Kontrollsequenzen zum
Sammeln eines solchen Roboterschwarms optimieren wir mittels Deep Reinforcement Learning. Letztlich
schließen wir diese Arbeit mit einem Ausflug in die Organisation der CG:SHOP Challenges.



Preface

This thesis is a result (but not the end) of over five years of research, over ten years of study, and the
collaboration with many great minds. I tried not only to capture my research results, but also to share the
techniques and insights I learned over this time and deemed useful. In this thesis, I disclose most of my
portfolio of techniques by applying it to various interesting optimization problems, and it is my desire that
each reader will be able to find a useful takeaway for their own portfolio. If you are not looking to increase
your portfolio but are interested in the considered optimization problems, I highlighted directions for future
work in multiple places as described below.

Be aware that the content of this thesis is not ordered chronologically, rather by topic, and many chapters
have already been published as individual papers. Some sections may be significantly older or newer than
the surrounding content, which can lead to slight inconsistencies in the application of techniques and their
presentations.

Future Work Throughout this thesis, there are many blue boxes containing suggestions for future work,
illustrated below. These boxes are intended as starting point and inspiration for anyone interested in joining
this field of research. Some of the questions are difficult and some just did not fit into the scope of this thesis.
The conclusions of the individual chapters may also contain further suggestions for future work, if they did
not fit directly into the text.

Future Work 0.1.

This is an example for a box describing a question for future work.

Plots True to the spirit of algorithm engineering, we will encounter many plots throughout this thesis.
Let us quickly recap how to interpret the different types of plots. The most common plot is the line plot,
with its lines showing the mean value, and the transparent extensions showing the 95 % confidence interval.
The wider the confidence interval, the higher the deviation of the data. For computing the mean and the
confidence interval, the x-axis is usually aggregated in some way, e.g., by incorporating values within a ±5 %
range. Most experimental data has too strong a deviation to be representable otherwise. This type of plot is
useful to present a value, e.g., the runtime, dependent on a parameter, e.g., the instance size. If we need to
compare more than a few different configurations, line plots become too crowded, so we switch to bar plots
or box plots. Bar plots only show the mean, while box plots show the mean, quartiles, range, and outliers.
Outliers lie outwith the interquartile range. If the first quartile ends at 𝑞1 and the third quartile at 𝑞3, then
points smaller than 𝑞1 − 1.5 · (𝑞3 − 𝑞1) or larger than 𝑞3 + 1.3 · (𝑞3 − 𝑞1) are defined as outliers. Scatter plots
are raw data without any aggregation. The last and most complex type of plot is the pair plot, which consists
of a set of scatter plots along with density distributions. These are used to show the correlation between
multiple features and the value distribution within the features. You can easily find more information on
how to read such plots online using the corresponding keywords. Most plots and figures are unfortunately
not optimized for black and white prints or colorblind people.

Supplementary material Most of the code and data is available on https://github.com/d-krupke/

dissertation.
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Figure 1.1.: A large network of satellites.

Introduction 1.

The field of Computational Geometry gives rise to many practically
relevant problems that are provably hard to solve, such as network
optimization problems or trajectory planning. The field of algorithm
engineering, on the other hand, provides us with many techniques to
solve hard problems, sometimes even to optimality. Throughout this
thesis, we use various algorithms and techniques such as linear and
mixed integer programming, constraint programming, SAT-solvers, deep
reinforcement learning, auction-based algorithms, genetic algorithms,
etc., to solve various geometric optimization problems. Techniques that
are relatively uncommon or novel, such as CP-SAT or deep reinforcement
learning for optimization problems, are accompanied by an introduction
and explanation.

This thesis consists of five parts (with a total of twelve chapters), whereby
each part considers a different set of problems. Each part – and most
chapters – can be read independently. However, it is recommended to
read this thesis in the order in which it is presented as the organization
was intentional and follows logically.

Part I considers optimization problems and algorithmic challenges, which
have arisen with the advent of large satellite constellations (Figure 1.1).
In Chapter 2 (Minimum Scan Cover) on page 9, we optimize a problem
in which satellites have to establish a set of inter-satellite links with
directed antennas that require costly rotations. Even when we simplify
the satellites to static points in the Euclidean space, the problem shows
interesting theoretical properties, including a strong relationship to the
chromatic number. After a number of complexity and approximation
results, we use mixed integer programming and constraint programming
to compute optimal solutions. The SAT-based constraint programming
solver CP-SAT shows a surprising strength in solving this problem. Addi-
tionally, we apply a set of (meta-)heuristics, including genetic algorithms,
to compute good solutions and compare them with the performance of
the approximation algorithms. In Chapter 3 (Angular Freeze-Tag) on
page 47, we consider a similar problem in which we have to broadcast
a message within a satellite swarm with directed antennas. After prov-
ing NP-hardness even for bipartite graphs in the plane and providing
an approximation algorithm for one problem variant, we use similar
techniques as in Chapter 2 to compute exact and good solutions. Again,
CP-SAT shows a superior performance as compared to classical mixed
integer programming, and we take a deeper look into its underlying
techniques. In Chapter 4 (Automated Data Retrieval from Large-Scale
Distributed Satellite Systems) on page 79, we optimize the usage of
classical ground stations for downlinking data, and we try to minimize
the data loss if there is not enough capacity for all satellites. We pro-
pose an auction-based algorithm that can also be extended to provide
a ground-station-as-a-service-system. The resulting schedules of this
approach prove to be superior to classical greedy strategies, evaluated in
realistic simulations.
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Figure 1.2.: A polygonal area with valu-
able (green) and difficult (red) regions.
The trajectory is displayed in black, with
the coverage in blue.

Figure 1.3.: Taxi trajectories and guards
which capture as much of them as possi-
ble.

Figure 1.4.: The yellow particles are gath-
ered by applying magnetic forces to
them.

Part II deals with optimizing trajectories for (partially) covering an area,
e.g., for aerial surveillance, a vacuum robot, or a harvester. We are given a
polygonal area with valuable regions to cover as well as difficult regions
that increase the energy consumption, see Figure 1.2 for an example. The
task is to plan a trajectory for a circular tool that minimizes the touring
costs (consisting of distances and turn angles) and the value of the missed
area. In Chapter 5 (Engineering an Approximation Algorithm) on page 95,
we begin with an abstract version of this problem in grid graphs; this
essentially equals to the Traveling Salesman Problem in Grid Graphs
with Turn Costs. We already showed in previous work [18, 27], that the
cycle cover relaxation is NP-hard, answering Problem 53 in the Open
Problems Project [28], and provided an approximation algorithm. This
approximation algorithm uses a linear programming relaxation to convert
the problem into a minimum-weight perfect matching instance. In its
original form, it can only solve relatively small instances in a reasonable
time, but we engineer this algorithm to solve instances with over 300 000
vertices. The experimental evaluation also shows visibly better tours
compared to the only other known approximation algorithm. In Chapter
6 (Generalization to Polygonal Areas) on page 109, we generalize this
algorithm to optimize trajectories for polygonal instances, as described
above. We show how to convert polygonal instances into discrete graphs
in which we only have to compute a tour, and we optimize the tour by
introducing a heuristic that computes optimal solutions for local parts
with mixed integer programming.

Part III, which is comprised only of Chapter 7 (Probing a Set of Trajec-
tories to Maximize Captured Information) on page 153, continues with
trajectories but captures them instead of planning them. The Trajectory
Capturing Problem asks for a placement of a limited number of guards
onto intersecting trajectories such that the parts captured between any
two guards are maximized. Such problems have applications in data
collection and compression, see Figure 1.3. On the theoretical side, we
prove NP-hardness even for orthogonal, straight-line trajectories, provide
approximation algorithms, and show an unlimited integrality gap of
the linear programming relaxation. On the practical side, we compute
optimal solutions with mixed integer programming and evaluate a set of
(meta-)heuristics.

Part IV returns to planning trajectories but this time for tiny particles,
which have to be actuated by external forces, e.g., magnetic fields. Because
of the similarity to Labyrinth (marble game) or Ball-in-a-maze puzzles,
such problems are often referred to as tilt problems in the literature. These
models find application in, e.g., the field of medicine controlling micro
robots within the human body. In Chapter 8 (Tilt Assembly) on page 177,
we search for construction plans to build specific shapes by iteratively
inserting sticky particles. The difficulty is that new particles can only be
added from the outside in a straight motion, which makes it impossible
to build certain shapes. We provide complexity results and algorithms
for various classes of shapes for deciding constructability or maximizing
the constructible part. Additionally, we show how to use a SAT-solver to
compute construction sequences or show infeasibility for arbitrary shapes
with more than 500 particles. In Chapter 9 (Targeted Drug Delivery)
on page 203, we do not construct something, rather try to gather all
particles, e.g., for targeted drug delivery. Here, the challenge is that all
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Figure 1.5.: Webpage of CG:SHOP.

particles move uniformly by the external force, and we need to utilize the
environment to manipulate a particle swarm, as in Figure 1.4. We prove
that the problem is NP-hard even in two-dimensional environments, but
also provide algorithms with performance guarantees. However, the best
command sequences in our experiments are computed by an approach
that utilizes a deep reinforcement learning algorithm. We show how easy
it has become to use popular reinforcement learning libraries to optimize
combinatorial problems.

Part V takes a different form and discusses the CG:SHOP challenges.
The CG:SHOP challenges are a yearly computational competition of
CG Week; participants are provided with an optimization problem in
Computational Geometry and a set of instances. Over a span of a few
months, teams try to compute the best solutions and submit them through
a web-interface, see Figure 1.5. In Chapter 10 (On Hosting the CG:SHOP
Challenges) on page 227, we provide first-hand experience of hosting
these competitions, and the first three challenges are summarized in
Chapter 11 (CG:SHOP Challenge 2019) on page 243, Chapter 12 (CG:SHOP
Challenge 2020) on page 255, and Chapter 13 (CG:SHOP Challenge 2021)
on page 261.





Part I.

Optimization Problems of

Satellite Swarms





7

This part of the thesis considers three optimization problems in the
context of satellite swarms. It provides basic research on underlying
geometric optimization challenges induced by inter-satellite links that
require costly rotations, and also provides a practical algorithm for
scheduling contact windows on sparse ground stations.

In Chapter 2, we consider the Minimum Scan Cover problem, which is
motivated by optimizing a set of direct inter-satellite communications
involving costly rotations for the adjustment of the directed antennas. We
show that the problem is intrinsically difficult even when abstracting the
satellite to static points in Euclidean space and abstracting the antenna
beams to rays. Minimizing the makespan reveals a close connection to
the chromatic number in one-dimensional instances, preventing any
constant-factor approximation for general instances. In this way, we can
also improve the bound on the directed minimum cut cover number.
Minimizing the energy consumption of the swarm or of single satellites
also shows to be NP-hard. On the positive side, we provide approximation
algorithms whose factors depend on the chromatic number in 2D and on
the arboricity for other metrics. An empirical study on computing exact
and heuristic solutions rounds off this chapter.

The Angular Freeze-Tag problem in Chapter 3 is of a similar nature
as Minimum Scan Cover, but instead of scheduling a set of concrete
communications, we are interested in efficiently distributing a message.
We start by looking at complexity results and then focus on computing
exact and heuristic solutions. We pay special attention to constraint
programming, and we investigate how well CP-SAT performs on such
geometric problems. While mixed integer programming solvers like
Gurobi or CPLEX are already well established in solving geometric
problems, the more generic constraint programming solvers are currently
scarcely used. The superior performance of CP-SAT on the Angular
Freeze-Tag and Minimum Scan Cover problems, however, shows that
satisfiability-based solvers can be a serious alternative when linear
programming-based solvers fail due to weak relaxations.

Chapter 4 closes the section on satellites with a more practical approach
on scheduling contact windows on ground stations with a market-based
strategy. While inter-satellite-based communication can improve the
communication of satellites in the future, most satellites currently only
support ground stations-based communication. If we reach a point at
which the available ground stations no longer provide enough downlink
capacity, we will need algorithms that can prioritize the most important
data. We discuss a corresponding algorithmic framework that uses auc-
tions to fairly distribute the available slots and evaluate its performance in
a realistic simulation. This approach can also be adapted to sell resources
in a Ground Station as a Service system.





Figure 2.1.: Artist’s rendition of the Eu-
ropean Data Relay Satellite constellation
architecture. Note the inter-satellite links
shown in red. (Image credit: ESA)
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In this chapter, we study a natural graph optimization problem that
arises from transition costs between incident edges, e.g., by inter-
satellite communication with directed antennas. First, we investigate
in depth the theoretical complexity and approximation possibilities
for various objectives, especially for graphs embedded in the plane.
For minimizing the makespan, we prove a strong relationship to the
chromatic number of the underlying graph. Afterward, we consider
the practical complexity of the problem. While mixed integer pro-
gramming fails, a SAT-based constraint programming approach can
solve medium-sized instances to optimality. Additionally, we analyze
the solution quality of the approximation algorithms and various
heuristics.

2.1. Introduction

During the recent years, the size of satellite constellations has been
greatly increasing, with much larger constellations still planned. One of
the critical bottlenecks is expected to be the communication between the
satellites, which is currently primarily implemented via ground stations.
This approach, however, is unlikely to scale such that inter-satellite links
(ILS) should be considered. These can be implemented with directed,
parabolic antennas or laser beams, see Figure 2.1 for an example. In
both cases, the satellites have to adjust, i.e., rotate, toward each other to
establish the connection.

In many network optimization problems, where different locations need
to be connected, the objective is to minimize the geometric distance
between the involved vertices. For our scenario, the distance is of lesser
importance as long as the line-of-sight is not disturbed. We are faced with
a different class of optimization problem, where the objective function
is not based on edge weights, but on the adjustment costs between
two edges. Problems of this type do not only arise from long-distance
communication; they also come into play when astro- and geophysical
measurements are to be performed, in which groups of spacecraft can
determine physical quantities not just at their current locations, but also
along their common line of sight; see [29] for a description.

We consider the problem of how to schedule a set of direct bidirectional
communications, such that the overall timetable is as efficient as possible.
The problem, Minimum Scan Cover with Angular Costs (MSC), asks
to establish a collection of connections between a given set of locations,
described by a graph 𝐺 = (𝑉, 𝐸) that is embedded in space. For any
connection (or scan) of an edge, the two involved vertices need to face each
other; changing the heading of a vertex to cover a different connection

∗ The content of this chapter was presented at SoCG 2020 [1] (full version has been
published in SIDMA [2]) and at SEA 2021 [3]. Many thanks to Kevin Buchin, Sándor
Fekete, Alexander Hill, Linda Kleist, Irina Kostitsyna, Roel Lambers, and Martĳn Struĳs
for collaborations on these problems.
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takes an amount of time proportional to the corresponding rotation angle.
We assume this graph to be static for now, such that it can easily be
described by a graph embedded in Euclidean space.

The first objective that we consider is Minimum Makespan Scan Cover
(MSC-MS), in which we want to minimize the overall time (makespan)
to establish all connections. The importance of conserving energy is
captured in Minimum Total Energy Scan Cover (MSC-TE), where the
goal is to minimize the sum of all rotation angles. In Minimum Bottleneck
Energy Scan Cover (MSC-BE), the task is to limit the energy used by any
one vertex by minimizing the maximum total rotation at one vertex.

In this chapter, we give a comprehensive study of this optimization prob-
lem for these three objective functions, with a focus on two-dimensional
geometric instances. Besides a theoretical analysis, providing complex-
ity and approximation results, we also perform a computational study
including additional heuristics and optimal solutions via mixed integer
programming (MIP) and constraint programming (CP).

2.1.1. Preliminaries

For all considered versions of Minimum Scan Cover (MSC), the input
consists of a graph 𝐺 = (𝑉, 𝐸). If not stated otherwise, 𝐺 is a geometric
(straight-line) embedded (not necessarily crossing-free) graph with 𝑉 ⊂
ℝ𝑑 , 𝑑 ∈ {1, 2, 3}. We refer to the elements of 𝑉 as points when their
specific locations in ℝ𝑑 are relevant; if we focus on graph properties, we
may also refer to them as vertices. We denote the undirected edge between
two vertices 𝑢, 𝑣 ∈ 𝑉 by 𝑢𝑣. For 𝑣 ∈ 𝑉 , we let 𝑁(𝑣) = {𝑢 ∈ 𝑉 : 𝑢𝑣 ∈ 𝐸}
be all vertices adjacent to 𝑣, and 𝐸(𝑣) = {𝑢𝑣 : 𝑢 ∈ 𝑁(𝑣)} be all edges
incident to 𝑣.

For two adjacent edges 𝑢𝑣, 𝑣𝑤 ∈ 𝐸(𝑣), let 𝛼(𝑢𝑣, 𝑣𝑤) ∈ [0, 180◦] denote
the smaller angle between the lines supporting the segments 𝑢𝑣 and
𝑣𝑤. The output for each problem is a scan cover 𝑆 : 𝐸 → ℝ+, such that
for all pairs of adjacent edges 𝑒 , 𝑒′, we have |𝑆(𝑒) − 𝑆(𝑒′)| ≥ 𝛼(𝑒 , 𝑒′). The
geometric interpretation of a scan cover is that all points 𝑣 ∈ 𝑉 have a
heading that can change over time, and that if 𝑆(𝑢𝑣) = 𝑡 then 𝑢 and 𝑣 face
each other at time 𝑡. In this case, we say that the edge 𝑢𝑣 is scanned at
time 𝑡. Thus, the above condition on 𝑆 guarantees that 𝑆 complies with
the necessary rotation time if rotation speed is bounded by 1.

We refer to the case in which we are given an abstract graph 𝐺, and 𝛼
is an abstract metric cost function, as Abstract Minimum Scan Cover
(aMSC). Note that this generalizes the Path-TSP for all objectives (see
Observation 2.5.1), so the problem becomes intractable if the cost function
𝛼 is not metric.

A rotation scheme describes the geometric change of headings of the vertices
over a time interval of length 𝑇, i.e., it is a map 𝑟 : 𝑉 × [0, 𝑇] ↦→ [0◦ , 360◦].
The total rotation angle of a vertex 𝑣 in 𝑟 is the total amount that 𝑣 rotates
over [0, 𝑇]. For a given scan cover 𝑆, we are particularly interested in
edges that are scanned consecutively. Therefore, let �𝑆(𝑒 , 𝑒′) = 1 if 𝑒 and
𝑒′ share exactly one vertex 𝑣 and the edge 𝑒′ is scanned directly after 𝑒 at
𝑣; otherwise �𝑆(𝑒 , 𝑒′) = 0.
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(a) (b)

0◦ 30◦ 60◦ 90◦ 120◦

150◦ 180◦ 240◦ 270◦ 300◦

(c)

Figure 2.2.: (a) A set of seven points in ℝ2, for which all pairs of points shall communicate, i.e., (b) the complete graph 𝐾7 needs to be
scanned. (c) A sequence of edge scans. The scanned edges at 30◦ and 270◦ can also be performed in parallel at either time. However, the
resulting scan cover has the same makespan. The nice 30◦ steps of the solutions are due to the regular structure of the instance. Other
instances can look much more chaotic.

We consider the following three problems, defined by their respective
objectives. For a given graph 𝐺 = (𝑉, 𝐸)with vertices in the plane, find a
scan cover 𝑆 with

▶ Minimum Makespan (MSC-MS):

min max
𝑒∈𝐸

𝑆(𝑒) (2.1)

▶ Minimum Total Energy (MSC-TE):

min
∑
𝑣∈𝑉

∑
𝑒 ,𝑒′∈𝐸(𝑣)

𝛼(𝑒 , 𝑒′) · �𝑆(𝑒 , 𝑒′) (2.2)

▶ Minimum Bottleneck Energy (MSC-BE):

min max
𝑣∈𝑉

∑
𝑒 ,𝑒′∈𝐸(𝑣)

𝛼(𝑒 , 𝑒′) · �𝑆(𝑒 , 𝑒′) (2.3)

Concentrating on the expensive and algorithmically challenging part of
efficient rotations between the edges, we do not fix the initial heading
of the satellites. In fact, all algorithms can be easily adapted to handle
fixed initial headings. Furthermore, for every of the three objectives, an
𝑓 -approximation can be converted into an ( 𝑓 + 1)-approximation for the
problem variant with fixed initial headings.

Figure 2.2 illustrates a minimum scan cover for a point set in the plane
that can be scanned in 300◦ with eleven discrete time steps. We do not
visualize the actual rotations as only the edge order is of importance. In
fact, a scan cover is completely determined by an edge order: It is always
optimal to directly rotate between two consecutive scans via the smallest



12 2. Minimum Scan Cover

angle for all three objectives. For each edge sequence 𝑒1 , . . . , 𝑒𝑚 , the best
scan cover scanning the edges in this order can be computed by

𝑆(𝑒1) = 0 and 𝑆(𝑒𝑖) = max{𝑆(𝑒 𝑗)+𝛼(𝑒𝑖 , 𝑒 𝑗)| 𝑗 : 𝑗 < 𝑖 , 𝑒𝑖∩𝑒 𝑗 ≠ ∅} for 𝑖 > 1.

For a vertex 𝑣, we denote by Λ(𝑣) the minimum angle, such that a cone
of this angle with apex 𝑣 contains all edges in 𝐸(𝑣). We call such a cone
a Λ-cone of 𝑣 and call the complement of such a cone an outer cone of
𝑣. The Λ-cone will be a useful lower bound for the minimum necessary
rotation of a vertex to scan all its edges. A Λ-cover is a scan cover for
which every vertex 𝑣 rotates in a single direction, either clockwise or
counterclockwise, with a total rotation angle equal to Λ(𝑣). Note that
different vertices can rotate in different directions. A Λ-cover minimizes
both the MSC-TE and MSC-BE objectives.

Future Work 2.1.

If the communication between two satellites does not have to be
bidirectional, one can also use multi-hop connections. Allowing a
(directed) message also be forwarded by relay satellites can signif-
icantly reduce the necessary rotations. How does this change the
characteristic of this problem?

2.1.2. Related Work

The use of directional antennas has introduced a number of geometric
questions. Carmi et al. [30] study the 𝛼-MST problem, which arises from
finding orientations of directional antennas with 𝛼-cones, such that the
connectivity graph yields a spanning tree of minimum weight, based
on bidirectional communication. They prove that for 𝛼 < 𝜋/3, a solution
may not exist, while 𝛼 ≥ 𝜋/3 always suffices. See Aschner and Katz [31]
for more recent hardness proofs and constant-factor approximations for
some specific values of 𝛼.

Many other geometric optimization problems deal with turn cost. Arkin
et al. [32, 33] show hardness of finding an optimal milling tour with turn
cost, even in relatively constrained settings, and give a 2.5-approximation
algorithm for obtaining a cycle cover, yielding a 3.75-approximation
algorithm for tours. The complexity of finding an optimal cycle cover
in a two-dimensional grid graph was stated as Problem 53 in The Open
Problems Project [28] and shown to be NP-complete in [18], which also
provides constant-factor approximations; practical methods and results
are given in [5], and visualized in the video [20]. The second part of this
thesis continues on this problem.

Finding a fastest roundtrip for a set of points in the plane for which
the travel time depends only on the turn cost is called the Angular
Metric Traveling Salesman Problem. Aggarwal et al. [34] prove hardness
and provide an 𝑂(log 𝑛) approximation algorithm for cycle covers and
tours that works even for distance costs and higher dimensions. For the
abstract version on graphs in which “turns” correspond to weighted
changes between edges, Fellows et al. [35] show that the problem is
fixed-parameter tractable in the number of turns, the treewidth, and the
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maximum degree. Fekete and Woeginger [36] consider the problem of
connecting a set of points by a tour in which the angles of successive
edges are constrained.

Our problem also draws connections to other graph optimization prob-
lems. In particular, for each point in time, the set of scanned edges induces
a bipartite graph. Therefore, one approach for scanning all edges of the
given graph is to partition it into a small number of bipartite graphs,
each corresponding to the set of edges separated by the cut induced
by a partition of vertices into two non-trivial sets. This problem is also
known as the Minimum Cut Cover Problem: Find the minimum number
of cuts to cover all edges of a graph. Loulou [37] shows that for complete
graphs, an optimal solution consists of ⌈log2 |𝑉 |⌉ cuts. Motwani and
Naor [38] prove that, unless P = NP, the problem on general graphs is not
approximable within 1.5 of the optimum, or 𝑂𝑃𝑇 + � log |𝑉 | for some
� > 0 in absolute terms, due to a direct relationship with Graph Coloring.
Hoshino [39] considers practical methods based on integer programming
and heuristics for cut covers. Chuzhoy and Khanna [40] show that the
directed version of covering a directed graph by the minimum number
of directed cuts is also an NP-hard problem.

On the application side, Korth et al. [29] describe the use of tomography
(i.e., determining physical phenomena by measuring aggregated effects
along a ray between two sensors) in the context of astrophysics. Using
multiple sensors (e.g., satellites) for performing efficient measurements is
one of the motivations for the algorithmic work in this chapter. Scheduling
satellite communication has received a growing amount of attention,
corresponding to the increasing size of satellite swarms.

In the context of scheduling, Allahverdi et al. [41–43] provide a nice and
comprehensive survey on scheduling variants with sequence-dependent
setup costs. Sotskov et al. [44] consider a scheduling variant that can di-
rectly be expressed as vertex coloring. In the context of earth observation,
Li et al. [45] and Augenstein et al. [46] describe MIPs and heuristics to
schedule image acquisition and downlink for satellites for which rotation
and setup costs are taken into account.

2.1.3. Overview

In Section 2.2 (Complexity in 1D) on the following page, we show that
MSC-TE and MSC-BE can be efficiently solved in 1D (Theorem 2.2.1)
while MSC-MS corresponds to a minimum directed cut cover and has
a strong correlation to the chromatic number. Additionally, we provide
an improved upper bound of ⌈log2 𝜒(𝐺) + 1/2 · log2 log2 𝜒(𝐺) + 1⌉ (The-
orem 2.2.2 and Corollary 2.2.3) for the minimum directed cut cover
number, which is essentially tight in general; even for directed acyclic
graphs corresponding to minimum scan covers (Lemma 2.2.4) this is in
the right order of magnitude. This implies that, unless P = NP, there exists
no constant-factor approximation even in 1D (Theorem 2.2.6). Neverthe-
less, we show that instances in which the underlying graphs are bipartite
or complete graphs can be solved in polynomial time (Observations 2.2.7
and 2.2.8).

While the objectives differ strongly in 1D, bipartite instances in 2D have a
comparable complexity. In Section 2.3 (Hardness in 2D) on page 19, we
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Figure 2.3.: This instance can be scanned
in three steps. However, two steps are
not sufficient because the edges of
each monotone path would need to be
scanned in alternating time steps; mak-
ing it impossible to scan the dotted edge
if solid and dashed edges are already
scanned alternatingly.

prove that bipartite instances in 2D are hard to approximate better than
3/2 for MSC-MS (Theorem 2.3.2) and 1.04 for MSC-BE (Corollary 2.3.10)
as well as NP-hardness for MSC-TE (Theorem 2.3.9). In Section 2.4 (Ap-
proximations in 2D) on page 29, we provide a 4.5-approximation (Theo-
rem 2.4.3) for MSC-MS and a 2-approximation for the other two objectives
(Theorem 2.4.4). More generally, we present an 𝑂(𝐶)-approximation for
a 𝑘-colored graph with 𝑘 ≤ 𝜒(𝐺)𝐶 (Theorem 2.4.8) for MSC-MS. This
has immediate consequences for several interesting graph classes, e.g.,
the scan time of graphs in 1D and 2D lies in Θ(log2 𝜒(𝐺)), and there exist
constant factor approximations for various types of instances (Corollar-
ies 2.4.9 and 2.4.10).

In Section 2.5 (3D and Abstract) on page 35, we consider all objectives
in 3D and the abstract version aMSC. In contrast to 2D, the minimum
makespan in 3D may exceed 𝑂(log2 𝑛) (Observation 2.5.4). Comple-
mentary to the fact that aMSC for stars is equivalent to path-TSP and
thus NP-hard, we provide a 2.5-approximation of aMSC for trees (Theo-
rem 2.5.5) on all three objectives. This yields an 𝑂(𝜏)-approximation for
graphs with arboricity 𝜏 (Theorem 2.5.6).

Our practical study in Section 2.6 (Computational Study) on page 37
considers optimal solutions as well as heuristic solutions. For optimal
solutions, we develop three mixed integer programs (MIPs), as well as
two constraint programs (CPs) and evaluate their practical performance
on a suite of benchmark instances. Solving instances of MSC-TE and
MSC-BE to provable optimality turns out to be quite difficult; for MSC-
MS, we are able to solve instances with up to 300 edges, based on one
CP. This is surprising as MSC-MS is much harder on the theoretical
side due to the connection to Graph Coloring that does not exist for
MSC-TE and MSC-BE. In addition, we compare the solution quality
of four (meta-)heuristics and the approximation algorithms on larger
instances with up to 800 edges. In our experiments, a genetic algorithm
and the intermediate solution after timeout of one CP produce the best
solutions.

2.2. Complexity of One-Dimensional Point Sets

In the one-dimensional case, all vertices lie on a single line 𝐿. Therefore,
an instance can be described by a graph 𝐺 = (𝑉, 𝐸) and a total order of
the vertices <𝐿 on 𝐿. We assume this line to be horizontal, so vertices
face either left or right when scanning an edge. Moreover, scan times can
be restricted to discrete multiples of 180◦. This allows us to encode the
headings of a vertex 𝑣 at these time steps by a 0-1-vector 𝑠(𝑣), where a
right heading is denoted by 0, and a left one by 1; we denote by 𝑠𝑖(𝑣) the
𝑖th bit of 𝑠(𝑣). Then a scan cover with 𝑁 steps of (𝐺, <𝐿) is an assignment
𝑠 : 𝑉 → {0, 1}𝑁 , such that for every edge 𝑢𝑣 ∈ 𝐸, 𝑢 <𝐿 𝑣, there exists an
index 𝑖 ∈ [𝑁] with 𝑠𝑖(𝑢) = 0 and 𝑠𝑖(𝑣) = 1. The makespan of such a scan
cover is clearly 180◦(𝑁 − 1). For an example, consider Figure 2.3.

For MSC-TE and MSC-BE, we can actually solve these instances in
polynomial time.



2.2. Complexity in 1D 15

Theorem 2.2.1 MSC-TE and MSC-BE in 1D are in 𝑃. Moreover, denoting
by 𝑘 the number of vertices with neighbors to both sides, the objective value is
0◦ for 𝑘 = 0, while for 𝑘 > 0 it is 180◦ · 𝑘 for MSC-TE and 180◦ for MSC-BE.

Proof. We assume that the vertices are placed on a horizontal line. We
partition the vertices into two groups: those with a neighbor to only one
side and those with neighbors to both sides. If the second group is empty,
there is a trivial zero-cost solution for both objectives.

Thus, consider 𝑘 > 0. Each of these vertices needs to rotate at least
180◦, so the values 180◦ · 𝑘 and 180◦ are lower bounds for MSC-TE and
MSC-BE, respectively. The following strategy matches this lower bound:
The vertices in the first group are headed to their neighbor and do not
rotate. In the following we restrict our attention to the vertices in the
second group. In the beginning, all of them are headed left. Then, from
left to right, one after the other rotates such that it is headed right; the
next vertex starts only after the completion of its predecessor. Note that
whenever a vertex rotates, all edges to its left are scanned. Consequently,
this yields a valid scan cover.

MSC-MS shows to be significantly harder due to a relation to the chromatic
number, which MSC-TE and MSC-BE do not have.

2.2.1. Bounds Based on Chromatic Number and

Cut Cover Number

In the following, we establish a strong relationship between the makespan
of an MSC-MS in 1D and the chromatic number 𝜒(𝐺), which is closely
linked to the cut cover number 𝑐(𝐺) of the involved graph 𝐺 = (𝑉, 𝐸),
i.e., the size of a smallest partition of the edge set into bipartite graphs.
Motwani and Naor [38] show that

𝑐(𝐺) = ⌈log2 𝜒(𝐺)⌉ .

Because the scanned edges in each time step form a bipartite graph, a
scan cover induces a cut cover. However, the resulting bipartite graphs
have the additional property that for each vertex all neighbors are either
smaller or larger with respect to<𝐿. Thus, not every cut cover corresponds
to a scan cover. However, scan covers correspond to directed cut covers of
the directed graph, induced by orienting the edges from left to right. Note
that 𝜒(𝐺) is not influenced by directing the edges. Watanabe et al. [47]
bound the directed cut cover number ®𝑐(𝐺) of a directed graph 𝐺:

®𝑐(𝐺) ≤ ⌈log2 𝜒(𝐺)⌉ + ⌈log2⌈log2 𝜒(𝐺) + 1⌉⌉

We improve this bound by showing an upper bound for the size of a
smallest scan cover in terms of the chromatic number (and the cut cover
number); this bound is best possible for the directed cut cover number as
we explain later.
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Theorem 2.2.2 For every graph 𝐺 with 𝜒(𝐺) ≥ 2 and every ordering <𝐿 of
the vertices, there exists a scan cover of (𝐺, <𝐿) with 𝑁 steps such that

𝑁 ≤ ⌈log2 𝜒(𝐺) + 1/2 · log2 log2 𝜒(𝐺) + 1⌉ (2.4)

Proof. Consider a coloring of 𝐺 with 𝐶 := 𝜒(𝐺) colors and choose an 𝑁
large enough such that 𝐶 ≤

( 𝑁
⌊𝑁/2⌋

)
. For 𝑘 := ⌊𝑁/2⌋, we consider the set

of vectors {0, 1}𝑁𝑘 of length 𝑁 with exactly 𝑘 many 1’s. We define a scan
cover 𝑠 : 𝑉 → {0, 1}𝑁𝑘 , such that for all vertices of the same color, we
assign the same vector, while vertices of different color obtain different
vectors. Such an assignment exists, because the number of vectors, i.e.,( 𝑁
⌊𝑁/2⌋

)
, is at least as large as the number of colors.

To see that 𝑠 is a scan cover, consider a fixed but arbitrary edge 𝑢𝑣 of 𝐺.
Because the vectors 𝑠(𝑢) and 𝑠(𝑣) differ but have the same number of 1’s,
they are incomparable, i.e., there exist 𝑖 and 𝑗 such that 𝑠𝑖(𝑢) = 0, 𝑠𝑖(𝑣) = 1
and 𝑠 𝑗(𝑢) = 1, 𝑠 𝑗(𝑣) = 0. Therefore, depending on the ordering of 𝑢 and
𝑣 on 𝐿, the edge 𝑢𝑣 is either scanned in step 𝑖 or 𝑗.

It remains to show that defining 𝑁 := ⌈log2 𝐶 + 1/2 · log2 log2 𝐶 + 1⌉
satisfies 𝐶 ≤

( 𝑁
⌊𝑁/2⌋

)
. By a variant of Stirling’s formula [48], it holds that

𝑒1/(12𝑛+1) ≤ 𝑛!√
2𝜋𝑛(𝑛/𝑒)𝑛

≤ 𝑒1/(12𝑛). (2.5)

This implies that
( 𝑁
⌊𝑁/2⌋

)
≥
√

2/𝜋𝑁 · 2𝑁 · 𝑒 −1
4𝑁−1 , so it suffices to guarantee

𝐶 ≤
√

2/𝜋𝑁 · 2𝑁 · 𝑒 −1
4𝑁−1

⇐⇒ log2 𝐶 ≤ 𝑁 + 1/2(1 − log2 𝜋 − log2 𝑁) − log2 𝑒/(4𝑁−1).

If 𝐶 ≥ 3, this holds for 𝑁 = ⌈log2 𝐶 + 1/2 · log2 log2 𝐶 + 1⌉ ≥ 3; in case
of 𝐶 = 2, it holds that 𝑁 = ⌈log2 𝐶 + 1/2 · log2 log2 𝐶 + 1⌉ = 2, and thus
𝐶 ≤

( 𝑁
⌊𝑁/2⌋

)
.

Note that the assigned vectors in the proof of Theorem 2.2.2 are pairwise
incomparable. Therefore, such an assignment yields a directed cut cover
for all edge directions and thus a general bound on the directed cut cover
number.

Corollary 2.2.3 For every directed graph 𝐺, the directed cut cover number is
bounded by

®𝑐(𝐺) ≤ ⌈log2 𝜒(𝐺) + 1/2 · log2 log2 𝜒(𝐺) + 1⌉ .

In fact, the bound in Corollary 2.2.3 is best possible for general directed
graphs, because a cut cover of the complete bidirected graph corresponds
to an assignment of pairwise incomparable vectors (and Sperner’s theo-
rem asserts that the used set of vectors is maximal). Figure 2.3 illustrates
an example of a graph 𝐺 and an ordering <𝐿 showing that the bound of
Theorem 2.2.2 and Corollary 2.2.3 is also tight for some (directed acyclic)
graphs with 𝜒(𝐺) = 3. In the following, we show a general lower bound
for our more special setting.
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Lemma 2.2.4 For every constant 𝐶, there exists a graph 𝐺 and an ordering
<𝐿 such that 𝜒(𝐺) > 𝐶 and the number 𝑁 of steps in every scan cover of
(𝐺, <𝐿) is at least

𝑁 ≥ ⌈log2 𝜒(𝐺) + 1/4 · log2 log2 𝜒(𝐺)⌉ . (2.6)

Proof. Let ℓ ≥ 4 be an integer divisible by 4 and 𝑛 := 2ℓ such that
2𝑛 > 𝐶. We consider the Turan graph 𝐺 on 𝑛2𝑛 vertices partitioned into
2𝑛 independent sets of size 𝑛, see Figure 2.4a. Because 𝐺 is a complete
2𝑛-partite graph, it holds that 𝜒(𝐺) = 2𝑛 . We place the vertices on the
line, such that for a fixed {1, . . . , 2𝑛}-coloring of 𝐺, there exist 𝑛 disjoint
intervals in which the colors appear in the order 1, . . . , 2𝑛 , as illustrated
in Figure 2.4b.

1

..
.

2

2n

(a) The graph 𝐺.

. . .

(b) The ordering <𝐿 of the vertices on 𝐿. Figure 2.4.: Illustration for the proof of
Lemma 2.2.4.

For a contradiction, suppose that there exists a scan cover 𝑠 : 𝑉 → {0, 1}𝑘
of (𝐺, <𝐿) with 𝑘 := ⌈log2 𝜒(𝐺) + 1/4 · log2 log2 𝜒(𝐺)⌉ − 1 = 𝑛 + ℓ/4 − 1
steps. Thus, the number of different vectors is 2𝑘 = 2𝑛−1𝑛1/4.

We say a color class has a common vector if some vector is assigned to at
least 𝑛3/4 of the 𝑛 vertices of this color class. Let 𝑡 denote the number
of different color classes with a common vector; clearly, the number of
color classes without a common vector is 2𝑛 − 𝑡. We show that 𝑡 ≥ 1/2 · 2𝑛 .
Because vertices with the same vector will never face each other, each
vector may only appear in one color class, i.e., the color classes induce a
partition of the set of vectors. Consider the 2𝑛 − 𝑡 color classes (and their
assigned vectors) in which every vector appears less than 𝑛3/4 times. Let
𝛿 denote the average usage of vectors in these classes. Note that 𝛿 is lower
bounded by the ratio of the number of vertices, namely (2𝑛 − 𝑡)𝑛, and the
maximum number of remaining vectors, namely 2𝑘 − 𝑡. Consequently,
𝛿 ≥ 𝑛2𝑛−𝑡𝑛

2𝑘−𝑡 . Moreover, by our assumption, we consider color classes
without common vectors and hence 𝛿 < 𝑛3/4. Therefore, we obtain the
following chain of implications:

𝛿 < 𝑛3/4 =⇒ 𝑛2𝑛 − 𝑡𝑛
2𝑘 − 𝑡

< 𝑛3/4

⇐⇒ 𝑡 > 2𝑛 · 1
2(1 − 𝑛−1/4)

=⇒ 𝑡 > 1/2 · 2𝑛

For each of these 𝑡 color classes with a common vector, we choose a vector
with a maximal number of appearances and introduce an interval on 𝐿
from the first to the last occurrence. By the ordering of the vertices, every
two vertices of the same color have a distance of at least 2𝑛 , and hence
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the interval spans at least 𝑑 = 2𝑛𝑛3/4 vertices. On average, every vertex is
contained in the following number of intervals

𝑡 · 𝑑
|𝑉 | ≥

1/2 · 2𝑛 · 2𝑛𝑛3/4

𝑛2𝑛
=

2𝑛

2𝑛1/4 = 2𝑛−1𝑛−1/4.

By the pigeonhole principle, there exists a set 𝑆 of at least 2𝑛−1𝑛−1/4 vectors
with mutually intersecting intervals. We claim that any two vectors 𝑎 and
𝑏 of 𝑆 are pairwise incomparable, i.e., there exist two indices 𝑖 , 𝑗 such that
𝑎𝑖 = 0, 𝑏𝑖 = 1 and 𝑎 𝑗 = 1, 𝑏 𝑗 = 0: Because the intervals intersect, among
the four occurrences of 𝑎 and 𝑏 on <𝐿, there exist three such that they
appear alternating. To scan the corresponding edges, the vectors must be
incomparable. Thus, there must exist 2𝑛−1𝑛−1/4 pairwise incomparable
vectors.

However, by Sperner’s theorem, every set of vectors of length 𝑘 contains
at most

( 𝑘
⌊𝑘/2⌋

)
pairwise incomparable vectors and(

𝑘

⌊𝑘/2⌋

)
≤
√

2/𝑘𝜋 · 2𝑘 · (1 + 1/11) ≤ 1/√𝑘 · 2𝑘 .

It remains to show that the number of necessary incomparable vectors
exceeds this:

2𝑘√
𝑘
<

2𝑛−1

𝑛1/4 ⇐⇒ 𝑛 < 𝑘

This holds for ℓ > 4 and yields a contradiction. For ℓ = 4 it holds that
𝑘 = 𝑛. Thus, each color class has a unique vector, all of which need to be
incomparable, a contradiction.

2.2.2. No Constant-Factor Approximation in 1D

Theorem 2.2.2 implies the following.

Lemma 2.2.5 For any constant 𝐶, a 𝐶-approximation for MSC-MS implies
a polynomial-time algorithm for computing a coloring of graph 𝐺 with
4𝐶 · 𝑘𝐶 ·

√
log2(𝜒(𝐺))

𝐶
colors.

Proof. Let ℓ ∗ denote the length of a minimum scan cover of 𝐺 and 𝑘 :=
𝜒(𝐺). Then a 𝐶-approximation algorithm computes a scan cover of length
ℓ ≤ 𝐶 ·ℓ ∗. Theorem 2.2.2 implies that𝐶 ·ℓ ∗ ≤ 𝐶 · ⌈log2 𝑘+1/2 log2 log2 𝑘+1⌉,
yielding a coloring with 2ℓ colors. Thus, we obtain the following chain of
inequalities:

2ℓ ≤ 2𝐶(⌈log2 𝑘+1/2 log2 log2 𝑘+1⌉) ≤ 2𝐶·log2 𝑘 · 21/2·𝐶·log2 log2 𝑘 · 22𝐶

≤ 4𝐶 · 𝑘𝐶 ·
√

log2(𝑘)
𝐶

.
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Theorem 2.2.6 Even in 1D, a𝐶-approximation for MSC-MS for any constant
𝐶 ≥ 1 implies P = NP.

Proof. Suppose MSC-MS allows a 𝐶-approximation for some constant
𝐶 ≥ 1. By Lemma 2.2.5, a 𝐶-approximation of MSC-MS in 1D implies that
there is a polynomial-time algorithm for finding for every 𝑘-colorable
graph 𝐺 a coloring with 4𝐶 · 𝑘𝐶 ·

√
log2(𝑘)

𝐶
colors. Khot [49] showed that,

for sufficiently large 𝑘, it is NP-hard to color a 𝑘-colorable graph with at
most 𝑘log2(𝑘)/25 colors. However, for every 𝐶 we can find a 𝑘 such that
4𝐶 · 𝑘𝐶 ·

√
log2(𝑘)

𝐶
< 𝑘log2(𝑘)/25. This yields a polynomial-time algorithm

for an NP-hard problem, implying that P = NP.

2.2.3. Polynomial Cases for MSC-MS

Even though there is no constant-factor approximation in general for
MSC-MS, we would like to note that bipartite and complete graphs in 1D
can be solved in polynomial time.

Observation 2.2.7 For instances of MSC-MS in 1D for which the underlying
graph 𝐺 is bipartite, there exists a polynomial-time algorithm for computing
an optimal scan cover.

Proof. We assume that 𝜒(𝐺) = 2, otherwise there is no edge to scan. If
for every vertex, all its neighbors lie either before or after it, 𝐺 can be
scanned within one step, which is clearly optimal. Otherwise, every scan
cover needs at least two steps. By Theorem 2.2.2, there exists a scan cover
with 2 steps. Because bipartite graphs can be colored in polynomial time,
the proof of Theorem 2.2.2 provides a scan cover.

Observation 2.2.8 For instances of MSC-MS in 1D for which the underlying
graph 𝐺 is a complete graph, there exists a polynomial-time algorithm for
computing an optimal scan cover.

Proof. Because every scan cover induces a cut cover and 𝑐(𝐺) = ⌈log2 𝑛⌉,
it suffices to provide a scan cover with this number of steps. To this end,
we recursively scan the bipartite graphs induced by two vertex sets when
split into halves with respect to the order <𝐿.

2.3. Hardness in 2D:

Hardness of Bipartite Point Sets

By Theorem 2.2.6, we cannot hope for a constant-factor approximation
for MSC-MS for general graphs. However, bipartite graphs in 1D can be
solved in polynomial time. MSC-TE and MSC-BE can be solved efficiently
at least in 1D, as seen in Theorem 2.2.1.
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We now show that the added geometry of 2D makes the MSC-MS hard
to approximate better than a factor of 3/2, even for bipartite graphs.
Afterward, we show that also MSC-TE and MSC-BE become difficult,
proving the NP-hardness of MSC-TE and that it is NP-hard to approximate
bipartite graphs better than a factor of 1.04 for MSC-BE. Corresponding
constant-factor approximation algorithms follow later in Section 2.4.

2.3.1. MSC-MS: Approximation Hardness for MSC-MS

As a stepping stone for the geometric case, we establish the follow-
ing.

Lemma 2.3.1 It is NP-hard to approximate aMSC-MS better than 3/2, even
for bipartite graphs.

Proof. The proof is based on a reduction from Not-All-Equal-3-Sat, for
which a satisfying assignment fulfills the property that each clause has a
true and a false literal, i.e., all false or all true is prohibited. The nice
feature of this variant is that the negation of a satisfying assignment is
also a satisfying assignment.

For every instance 𝐼 of Not-All-Equal-3-Sat, we construct a graph 𝐺𝐼
and a cost function 𝛼, for which each edge pair has a transition cost
of 0, 𝜙, or 2𝜙. Thus, every optimal scan cover has discrete time steps
at distance 𝜙. We show that there exists a scan cover of (𝐺𝐼 , 𝛼) with
three time steps, i.e., a scan time of 2𝜙, only if 𝐼 is a satisfiable instance.
Otherwise, every scan cover has at least four steps, i.e., a value of 3𝜙.

We now describe our construction of 𝐺𝐼 , which is a special variant of a
clause-variable-incidence graph. For an illustration, see Figure 2.5.

Figure 2.5.: Illustration of the graph 𝐺𝐼
for the instance 𝐼 = (𝑥1∨ 𝑥2∨ 𝑥3)∧ (𝑥1∨
𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3).

(x1 ∨ x2 ∨ x3) (x2 ∨ x3 ∨ x4)

x1 x1 x2 x2 x3 x3 x4 x4

(x1 ∨ x2 ∨ x3) φ2φ 0

There are four types of vertices and three types of edges: For every clause
𝐶𝑖 of 𝐼, we introduce a clause gadget consisting of a clause vertex and three
entry vertices, each of which represents one of the literals appearing in the
clause. The clause vertex is adjacent to every entry vertex of its gadget by
a clause edge. For every variable 𝑥𝑖 of 𝐼, we introduce a variable vertex and
two literal vertices. The variable vertex is adjacent to both literal vertices
via a variable edge. Moreover, for every entry vertex, we introduce an
incidence edge to the literal vertex that it represents.

We define 𝛼 as follows: The transition cost for any edge pair is 𝜙 if it
contains a clause edge, 2𝜙 if it contains a variable edge, and 0 otherwise.
Note that every variable and clause edge are pairwise disjoint; hence this
is well-defined.
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We now show that if 𝐼 is a satisfiable instance of Not-All-Equal-3-Sat,
then there exists a scan cover with three time steps: If a literal is set to
true, then the variable edge of this literal vertex is scanned in the first
time step and all remaining edges of the literal vertex in the third step.
Likewise, if a literal is false, then its variable edge is scanned in the third
step, and all other incident edges in the first step.

For each clause we choose one positive and negative literal to be responsible,
the third literal is intermediate. The clause edges are scanned in the
first, second, or third step, depending on whether their entry vertex
corresponds to a responsible positive literal, an intermediate literal, or a
responsible negative literal, respectively. Note that the edge pairs with
transition costs of 2𝜙, namely the edges incident to literal vertices, are
scanned in the first or third step. Thus, the value of this scan cover is 2𝜙.
For an example, consider Figure 2.6.

(x1 ∨ x2 ∨ x3) (x2 ∨ x3 ∨ x4)

x1 x1 x2 x2 x3 x3 x4 x4

(x1 ∨ x2 ∨ x3) 1

3
2

Figure 2.6.: Illustration of a scan cover of
the graph 𝐺𝐼 . Green edges are scanned
in the first, yellow in the second, and red
edges in the third step.

Now we consider the reverse direction and show that a scan cover with
three time steps corresponds to a satisfying assignment of 𝐼. Because the
transition cost of any two edges incident to a literal vertex is 2𝜙, each
variable or incidence edge is scanned either in the first or third step.
Therefore, we may define an assignment of 𝐼 by setting the literals whose
variable edge is scanned in the first time step to true. It remains to argue
that in this assignment, every clause has a true and false literal. Note
that the three edges of a clause gadget, must be scanned at different time
steps. Consequently, there exists a clause edge that is scanned in the first
time step. Its adjacent incident edge is therefore scanned in the third step.
This implies that the variable edge of the literal vertex is also scanned in
the first time step and thus set to true. Likewise, the clause gadget in the
third step corresponds to a false literal. Consequently, this assignment
shows that 𝐼 is a true-instance of Not-All-Equal-3-Sat.

We now use Lemma 2.3.1 for showing hardness of bipartite graphs in the
geometric version.

Theorem 2.3.2 Even for bipartite graphs in 2D, a C-approximation for
MSC-MS for any 𝐶 < 3/2 implies P = NP.

Proof. Suppose that there is a (3/2− �)-approximation for some � > 0. For
every instance 𝐼 of Not-All-Equal-3-Sat, we can construct a graph 𝐺𝐼
for MSC-MS in 2D such that it has a scan time of 240◦ if 𝐼 is satisfiable,
and a scan time of at least 360◦ − � otherwise. We essentially use the
same reduction as in the proof of Lemma 2.3.1. The idea is to embed
the constructed graph 𝐺𝐼 in the plane on a triangular grid such that the
transition costs are reflected by the angle differences. Figure 2.7 depicts
the gadgets.
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Figure 2.7.: Illustration for the proof of
Theorem 2.3.2 on how to embed the 𝐺𝐼
into the plane with 𝜙 = 120◦.

(a) The clause gadget. (b) The variable gadget.

xi

Cj

(c) The incidence paths.

In particular, we choose 𝜙 = 120◦. For each clause gadget, we create a star
on four vertices with 120◦ angles between the edges. The incidence edges
also leave with 120◦ from the three entry vertices. Consider Figure 2.7a
for an illustration.

The vertices of the variable gadget can also easily be embedded with an
angle difference of 120◦. However, because the smaller angle between
any two segments is at most 180◦, we cannot directly construct angles
of 240◦. Therefore, we insert additional edges and vertices into the 240◦
angle with an angle difference of � as illustrated in Figure 2.7b. If an
incident vertex uses the smaller 120◦ angle, it would still need to cover
the additional edges resulting in an overall turning angle of at least
360◦ − � = 3𝜙 − �.

To connect the clause gadgets with the variable gadgets we now need
incidence paths instead of incidence edges. We use paths consisting of
three edges where angle differences of 240◦ at the interior vertices are
enforced as above, see Figure 2.7c. A path will propagate the decision
by always scanning all odd or all even edges at the same time with a
difference of 240◦. Thus, the first and the last edge of the path are scanned
at the same time.

Allowing the vertices to share their coordinates, we position all clause
and variable gadgets at the same locations, respectively. This results in
a constant number of coordinates. For unique coordinates, the gadgets
are shifted horizontally, see Figure 2.8a. In particular, we consider an
𝑂(1/(𝑛+𝑚)) refinement of the grid, where 𝑛 and 𝑚 denote the number
variables and clauses of 𝐼, respectively. In this grid, the gadgets can
be shifted horizontally to neighboring grid positions; the vertices on
the incidence paths are shifted to close positions. For an illustration

Figure 2.8.: Illustration for the construc-
tion with unique vertex coordinates.

Cm

x1 xnx1 xn. . .

C1

. . .

. . .

(a) An embedding of 𝐺𝐼 from Figure 2.5. (b) Shifting procedure in the refined grid.
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consider Figure 2.8b.

A (3/2−�)-approximation would now yield for a satisfiable instance a scan
time of at most (3/2− �) ·240◦ = 360◦− � ·240◦ and decide the satisfiability
because an unsatisfiable solution would have a scan time of at least
360◦ − � > 360◦ − � · 240◦. This is a contradiction to the NP-hardness of
Not-All-Equal-3-Sat.

2.3.2. MSC-BE and MSC-BE: Hardness

Next we show that for 2D instances of MSC-TE and MSC-BE, there does
not exist an efficient algorithm, unless P = NP. Specifically, we show
that MSC-TE and MSC-BE are NP-hard in 2D, even when the underlying
graph 𝐺 = (𝑉, 𝐸) is bipartite. Our proof is based on the observation
that if a Λ-cover exists, any scan cover optimal for MSC-TE is a Λ-cover.
If additionally all vertices have the same Λ(𝑣), any scan cover optimal
for MSC-BE is a Λ-cover. We show finding a Λ-cover is NP-hard via
a reduction from the NP-complete problem Monotone Not-all-equal
3-satisfiability (MNAE3SAT) [50, 51], defined as follows: Given a set of
Boolean variables 𝑋 and a set of clauses Cwith at most 3 literals from 𝑋

all of which are not negated, is there a 0/1-assignment to the variables in
𝑋 , such that for each clause in C, not all variables have the same value?

Given an instance 𝐼 of the MNAE3SAT, we construct an MSC instance
𝐺𝐼 (with the same Λ(𝑣) for all vertices) that has a Λ-cover if and only if
𝐼 has a valid variable assignment. Recall that in a Λ-cover, the edges of
each vertex are scanned in either clockwise or counterclockwise order.
We encode variable assignment by the rotation direction of the vertices
in 𝐺𝐼 in a Λ-cover. A variable is encoded by a subgraph that contains
a set of vertices that have the same rotation direction in a Λ-cover, and
a clause by a subgraph that contains three vertices that cannot all have
the same rotation direction in a Λ-cover. We connect variables to clauses
via wires, which are encoded by a subgraph that contains two vertices
that have the same rotation direction in a Λ-cover. See Figure 2.9 for an
example of the construction.

x4 = 0x2 = 0x1 = 1

C1 C2

x3 = 1

C3

Variable Gadget

W
ire

G
ad
get

Clause Gadget

Figure 2.9.: The constructed graph 𝐺𝐼
for the instance (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (𝑥1 ∨
𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥3 ∨ 𝑥4) of MNAE3SAT.
The gadgets are drawn symbolically; also
shown are the directions of the connector
vertices corresponding to the satisfying
assignment 𝑥1 = 𝑥3 = 1, 𝑥2 = 𝑥4 = 0.
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The construction in the proof of Theorem 2.3.9 establishes a gap be-
tween optimal and suboptimal solutions, which implies a constant-factor
approximation lower bound for MSC-BE.

Constructing the gadgets We construct a variable gadget 𝐺𝑥 (Figure 2.11)
for each variable 𝑥 ∈ 𝑋 and a clause gadget 𝐺𝐶 (Figure 2.10b) for each
clause 𝐶 ∈ C. For 𝑥 ∈ 𝐶, we connect the gadgets 𝐺𝑥 and 𝐺𝐶 with a wire
gadget 𝐺𝑤 (Figure 2.12). The resulting graph 𝐺𝐼 is symbolically shown
in Figure 2.9. We construct both the variable gadget and wire gadget
from smaller components called wire fragments 𝐺 𝑓 , see Figure 2.10a for
an illustration.

We first state several observations that help with the construction of these
gadgets.

Observation 2.3.3 If an edge 𝑣𝑤 is the first or the last edge scanned in a
Λ-cover, it bounds a minimal Λ-cone of vertex 𝑣 and of vertex 𝑤.

In the gadgets, we will prescribe the two edges bounding the Λ-cone of a
vertex.

Observation 2.3.4 Consider a straight-line drawing of a graph 𝐺. For every
vertex 𝑣 and every pair of consecutive edges 𝑒 , 𝑒′ at 𝑣, we can add edges
incident to 𝑣 (and new vertices of degree 1), such that in the resulting drawing,
𝑒 and 𝑒′ bound the Λ-cone of 𝑣.

Observation 2.3.4 allows us to choose the maximal angle between consec-
utive edges. In the same manner, we can ensure that Λ(𝑣) is equal for all
vertices 𝑣 of the gadgets (excluding the newly added vertices of degree
1).

Next we construct the individual gadgets. Consider a wire fragment
𝐺 𝑓 as depicted in Figure 2.10a. Using Observation 2.3.4, we make sure
that the Λ-cones correspond to the blue arcs. The vertices 𝑠, 𝑡 , 𝑢 can be
shared between subgraphs with the following properties concerning
their direction of rotation in a Λ-cover. Note that given a Λ-cover, we can
obtain a second Λ-cover by reversing all directions.

Lemma 2.3.5 The vertices 𝑠, 𝑡 , 𝑢 in the wire fragment 𝐺 𝑓 have the following
properties.

1. In every Λ-cover of 𝐺 𝑓 , the vertices 𝑢 and 𝑡 rotate in the same direction,
while 𝑠 rotates in the opposite direction.

2. There exists a Λ-cover of 𝐺 𝑓 .

Proof. Suppose we have a Λ-cover of 𝐺 𝑓 with scan order 𝑃. Note that
one of the edges 𝑠𝑢, 𝑡𝑣2 is first in 𝑃, and the other last (these are the only
edges bounding a minimal Λ-cone, see Observation 2.3.3). Suppose 𝑠𝑢 is
the first edge in 𝑃. Then 𝑠 turns counterclockwise and 𝑢 turns clockwise.
Additionally, 𝑡 turns clockwise, because 𝑡𝑣2 is the last edge. The other
case, in which 𝑡𝑣2 is the first edge, is analogous.
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The following scan order yields a Λ-cover of 𝐺 𝑓 in which 𝑠 rotates
counterclockwise, see also the edge labels in Figure 2.10a: 𝑠𝑢, 𝑢𝑣3, 𝑣2𝑣3,
𝑣1𝑣2, 𝑢𝑣1, 𝑣1𝑣5, 𝑠𝑣4, 𝑠𝑣5, 𝑡𝑣5, 𝑣3𝑣5, 𝑣3𝑣4, 𝑣1𝑣4, 𝑡𝑣4, 𝑡𝑣2.
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(a) Wire fragment with vertices 𝑠, 𝑡 , 𝑢 as
connectors. Coordinates are given relative
to 𝑣1.
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(b) Clause gadget with vertices 𝑐1 , 𝑐2 , 𝑐3 as
connectors on the corners of an equilateral
triangle.

Figure 2.10.: Blue arcs indicate the Λ-
cone of each vertex. Red edges are can-
didates for the first or last scanned edge
in a Λ-cover. Gray edge labels indicate a
scan order of a Λ-cover.

For a variable 𝑥 ∈ 𝑋, the variable gadget 𝐺𝑥 consists of a chain of wire
fragments, as depicted in Figure 2.11. Denoting the number of occurrences
of 𝑥 in 𝐼 by 𝑘, we create 2𝑘 copies of the wire fragment 𝐺𝑖

𝑓
with vertices

𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖 . Rotate the wire fragments with even index by 180◦. To combine
the wire fragments, we identify the vertices 𝑠𝑖 and 𝑠𝑖−1 for even 𝑖 and the
vertices 𝑢𝑖 and 𝑢𝑖−1 for odd 𝑖. We define 𝑉 𝑐

𝑥 := {𝑡2𝑖 | 𝑖 = 1, . . . , 𝑘} as the
connector vertices of the variable gadget.

G1
f

t1
u1

G2
f

t2
u2 = u3

s1 = s2 · · · G2k
f

t2k
u2k

s2k−1 = s2kG3
f

t3

Figure 2.11.: The variable gadget 𝐺𝑥 of a
variable 𝑥 ∈ 𝑋 consists of 2𝑘 wire frag-
ments, with every second copy rotated
by 180◦.

Lemma 2.3.6 The variable gadget 𝐺𝑥 has the following properties.

1. In every Λ-cover of 𝐺𝑥 , all vertices in 𝑉 𝑐
𝑥 rotate in the same direction.

2. There exists a Λ-cover of 𝐺𝑥 .

Proof. Suppose we have a Λ-cover of 𝐺𝑥 . By Lemma 2.3.5, 𝑢𝑖 and 𝑡𝑖 rotate
in the same direction, while 𝑠𝑖 rotates in the opposite direction. Because
the wire fragments are all connected at vertices with identical properties,
all copies rotate in the same direction across all wire fragments; in
particular, the vertices 𝑡𝑖 rotate in the same direction.

For each wire fragment𝐺𝑖
𝑓

in𝐺𝑥 , there exists a scan cover that is aΛ-cover
for the fragment (Lemma 2.3.5). Concatenating the schedules from 𝐺1

𝑓
to

𝐺𝑘
𝑓

in this order yields a schedule for 𝐺𝑥 . This results in a Λ-cover for
𝐺𝑥 , as vertices used in two fragments rotate in the same direction and
have two Λ-cones, one for each scan order of the two fragments.

For the construction of the clause gadget 𝐺𝐶 of 𝐶 ∈ C, see Figure 2.10b.
We place the connector vertices 𝑐1 , 𝑐2 , 𝑐3 at the corners of an equilateral
triangle, the vertices 𝑠1 , 𝑠2 , 𝑠3 on the midpoints of the sides as illustrated,
and insert the edges 𝑐𝑖𝑠 𝑗 for all 𝑖 , 𝑗 ∈ {1, 2, 3}. Using Observation 2.3.4,
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we ensure that the Λ-cones of 𝑠1, 𝑠2, and 𝑠3 correspond to the blue arcs
in the figure. Note that a small perturbation suffices to obtain rational
coordinates and does not harm the construction.

Lemma 2.3.7 The clause gadget 𝐺𝑐 has the following properties.

1. In every Λ-cover of 𝐺𝑐 , not all connector vertices in 𝐺𝑐 rotate in the
same direction.

2. For each assignment of directions to connector vertices in 𝐺𝑐 that does
not assign them all the same direction, there exists a Λ-cover of 𝐺𝑐 ,
such that every connector vertex rotates in its assigned direction.

Proof. Consider a Λ-cover 𝑆 of 𝐺𝑐 . Note that a connector vertex 𝑐𝑖 turns
clockwise in 𝑆 if and only if it scans the edge 𝑠𝑖𝑐𝑖 first; this edge is
highlighted red in Figure 2.10b.

By Observation 2.3.3, the edges 𝑠𝑖𝑐𝑖 are the unique candidates for the
first or last edge scanned in 𝑆. Consequently, at least one connector vertex
turns clockwise, and at least one turns counterclockwise.

What remains to be shown is that for all configurations of not all equal
rotations, there exists a scan order that covers the minimum angle. The
order 𝑐3𝑠3, 𝑐3𝑠1, 𝑐2𝑠1, 𝑐1𝑠3, 𝑐1𝑠2, 𝑐1𝑠1, 𝑐3𝑠2, 𝑐2𝑠3, 𝑐2𝑠2 is minimal and
has 𝑐3 clockwise and 𝑐1 , 𝑐2 counterclockwise. Reversing this order is
also minimal and has 𝑐1 , 𝑐2 clockwise and 𝑐3 counterclockwise. Up to
symmetry, these are all possible configurations in which 𝑐1 , 𝑐2 , 𝑐3 do not
all rotate in the same direction.

A wire gadget 𝐺𝑤 consists of a chain of 18 wire fragments 𝐺𝑖
𝑓

such that
two connectors on the ends of the chain differ in angle by �. Observe that
the angle between the bisectors of the maximum angles of vertices 𝑢𝑖 and
𝑠𝑖 is 90◦. The construction consists of five parts that each will rotate the
chain at an angle of �/5. (We use five parts to ensure the angle 90◦ − �/5
is not too small, which we need for Corollary 2.3.10) We connect the first
four fragments, such that 𝑢2 = 𝑠1, 𝑠3 = 𝑠2, and 𝑠4 = 𝑢3 (Figure 2.12). We
match the bisectors of all these connections, except for the connection
between 𝐺1

𝑓
and 𝐺2

𝑓
, which is 90◦ −�/5. This is repeated four more times.

The final part has only two wire fragments with an angle 90◦ − �/5
between them.

Figure 2.12.: The wire gadget consists
of a chain of 18 wire fragments 𝐺𝑖

𝑓
. Red

arcs indicate angles that vary such that
the angle of 𝑏1 and 𝑏2 is equal to �.

90◦− θ/5

G1
f

G2
f

G3
f
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· · ·
90◦− θ/5

G17
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G18
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u1

s1 = u2

s2 = s3

u3 = s4

u4
u17

s17 = u18

s18
b1

b2
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Lemma 2.3.8 Let 𝑏1 and 𝑏2 be the bisectors of the outer cones of 𝑢1 and 𝑠18
in the wire gadget 𝐺𝑤 , respectively (see Figure 2.12). For any angle �, the
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Figure 2.13.: Connecting the gadget 𝐺𝑤
to 𝐺𝑥 such that we have two possible
Λ-cones.

wire gadget 𝐺𝑤 can be constructed such that the (counterclockwise) angle
between 𝑏1 and 𝑏2 is � and fulfills the following properties.

1. In every Λ-cover of 𝐺𝑤 , both connector vertices 𝑢1 and 𝑠18 in 𝐺𝑤
rotate in the same direction.

2. There exists a Λ-cover of 𝐺𝑤 .

Proof. By construction, the angle between the bisectors of the outer cones
of 𝑢4𝑖+1 and 𝑠4𝑖+2 is �/5, and the angle between the bisectors of the outer
cones of 𝑠4𝑖+2 and 𝑠4(𝑖+1)+1 is 0. Therefore, the angle between the bisectors
of the outer cones of 𝑢1 and 𝑠18 is 5 · �/5 = �.

Consider the order of the connector vertices of 𝐺𝑤 , starting at 𝑢1, and
denote the 𝑖-th vertex by 𝑐𝑖 . Suppose we have a Λ-cover of 𝐺𝑤 . Any pair
of connector vertices in the chain that belong to the same wire fragment
rotates in the opposite direction (Lemma 2.3.5.1). Therefore, connector
vertices with an odd number of connector vertices between them on the
chain rotate in the same direction. Therefore, 𝑢1 and 𝑢18 rotate in the
same direction.

We now give a schedule in which 𝑢1 and 𝑠18 rotate clockwise. By
Lemma 2.3.5.2, there exists a Λ-cover schedule relative to each wire
fragment, such that 𝑐𝑖 rotates clockwise if and only if 𝑖 is odd. Concatenat-
ing the schedules from 𝐺18

𝑓
to 𝐺1

𝑓
in this order yields a schedule for 𝐺𝑤 .

The vertices internal to the wire fragments have the same angles as in the
earlier cover. Each connector vertex that is involved in one of the 90◦−�/5
angles rotates in counterclockwise direction and has the angle of size
90◦−�/5 inside the minimum cone, so the concatenation of the schedules
covers this vertex with a minimum cone. Each connector vertex that is
not involved in one of the 90◦ − �/5 angles has two Λ-cones, so these
vertices can be scanned in a Λ-cover for any order of the gadgets.

Finally, to construct 𝐺𝐼 , we first place corresponding variable and clause
gadgets in the plane. We place the gadgets in a row with all clauses to the
right of all variables. For a variable that occurs in a clause, we connect
their gadgets by a wire gadget. To this end, we first identify a connector
vertex 𝑐 := 𝑡2𝑖 of the variable 𝐺𝑥 and the connector vertex 𝑐 := 𝑢1 of the
wire gadget 𝐺𝑤 . We rotate the wire such that the bisector 𝑏 of the Λ-cone
of 𝑐 in 𝐺𝑥 and the bisector 𝑏 of the outer cone of 𝑐 in 𝐺𝑤 are equal. This
ensures that the identified vertex 𝑐 = 𝑐 has two Λ-cones of size Λ(𝑐)
(Figure 2.13).

By Lemma 2.3.8 we can choose the bisector of 𝑠18 corresponding to the
connector vertex 𝑐′ of the clause. With the clauses sufficiently far to the
right, we can write 𝑐′ − 𝑠18 as linear combination of 𝑠1 − 𝑢1 and 𝑠2 − 𝑢2
with positive coefficients. Therefore, we can scale 𝐺1

𝑓
and 𝐺2

𝑓
to move 𝑠18

to 𝑐′. As above, we get two Λ-cones of the same size.

We are now ready to prove that MSC-TE and MSC-BE are NP-hard.

Theorem 2.3.9 MSC-TE and MSC-BE in 2D are NP-hard, even for bipartite
graphs.
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Proof. Given an instance 𝐼 = (𝑋, 𝐶) of MNAE3SAT, we construct 𝐺𝐼 with
gadgets and auxiliary edges satisfying Lemmas 2.3.6 to 2.3.8. Observe
that 𝐺𝐼 is bipartite, because all gadgets are bipartite and the identified
connector vertices can all be assigned the same color. Additionally, all
vertices in 𝐺𝐼 have the same Λ(𝑣) by applying Observation 2.3.4. We
show that 𝐼 is satisfiable if and only if 𝐺𝐼 has a Λ-cover. Because any
optimal solution to MSC-TE and MSC-BE is a Λ-cover, if a Λ-cover exists,
this implies that both problems are NP-hard.

Suppose 𝐼 is satisfiable. Then there exists a variable assignment 𝜙 such
that in no clause all values are equal. We construct a Λ-cover for 𝐺𝐼 by
specifying a scan order. We start with the variable gadgets. For each
𝑥 ∈ 𝑋, scan all edges of 𝐺𝑥 with a Λ-cover, as follows. If 𝜙(𝑥) = 1,
the connector vertices rotate clockwise, otherwise counterclockwise. By
Lemma 2.3.6, such a scan order exists. Next, we scan all the wire gadgets
𝐺𝑤 such that both connector vertices of 𝐺𝑤 rotate in the same direction
as the one attached to the vertex gadget did in the vertex gadget. By
Lemma 2.3.8, such a scan order exists. Finally, scan the clause gadgets 𝐺𝑐 .
Each connector vertex already rotated (counter-) clockwise, depending
on 𝜙(𝑥) of the attached variable 𝑥. Because 𝜙 is a valid (non-equal)
assignment, no three connector vertices in a clause gadget rotate in the
same direction. Thus, by Lemma 2.3.7 a Λ-cover of this clause gadget
exists. Therefore, all edges can be scanned by a Λ-cover.

It remains to show the converse. Let 𝑆 be a Λ-cover of 𝐺𝐼 . We define
𝜑(𝑣) = 1 if 𝑣 rotates clockwise over its Λ-cone, and 𝜑(𝑣) = 0 otherwise.
We claim that if 𝑥𝑐 is a connector vertex in gadget 𝐺𝑥 , 𝜙(𝑥) = 𝜑(𝑥𝑐)
yields a satisfying truth assignment to 𝐼. By Lemma 2.3.6, in any Λ-cover
of 𝐺𝐼 , all 𝜑(𝑥𝑐) are equal for all connector vertices in 𝐺𝑥 , thus 𝜙(𝑥) is
well-defined. By Lemma 2.3.8, in any Λ-cover, both connector vertices
in gadget 𝐺𝑤 rotate in the same direction. Finally, by Lemma 2.3.7, no
clause gadget 𝐺𝑐 contains three connector vertices rotating in the same
direction in a Λ-cover. Therefore, 𝜙(𝑥) is a valid (non-equal) assignment
of 𝐼, i.e., 𝐼 is satisfiable. Because the reduction from 𝐼 to 𝐺𝐼 can be done in
time polynomial in the number of clauses and variables, this concludes
the proof.

Corollary 2.3.10 MSC-BE in 2D is NP-hard to approximate within a factor
of 1.04, even for bipartite graphs.

Proof. Given an instance 𝐼 of MNAE3SAT, consider the graph 𝐺𝐼 con-
structed in the proof of Theorem 2.3.9. Recall that by Observation 2.3.4,
we may assume that the angle of the Λ-cones coincide for all vertices.
Define�max := 360◦−Λ(𝑣) for some vertex 𝑣. Let�min denote the minimal
angle over all incident pairs of edges, for which both vertices have degree
greater than one.

In a scan cover 𝑆 for 𝐺𝐼 that is not a Λ-cover, there exists a vertex 𝑣 with
a total rotation angle exceeding Λ(𝑣). Consequently, either 𝑣 scans its
edges in a unidirectional rotation including the angle of size �max (while
possibly not scanning a smaller angle �), or some angle between two
edges at 𝑣 is covered at least twice. We may assume that both vertices of
those two edges have degree > 1, because edges with a vertex of degree
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1 can be reordered freely to get a unidirectional rotation. Therefore, this
angle has size at least �min.

Thus, the objective value of 𝑆 is at least min(360◦ − �, 360◦ −�max +�min),
while the cost of a Λ-cover is 360◦−�max. Let 𝛼 be the ratio between these
two quantities. To prove the corollary, it is sufficient to prove 𝛼 > 1.04.

By checking all gadgets, we observe that �max = arctan(1/2) (the angle
outside the Λ-cone of 𝑣5 in the wire fragment, see Figure 2.10a) and
�min ≥ arctan(1/4) (which is also realized at 𝑣5). The angle � can be
chosen smaller than any given constant by adding additional edges. This
results in 𝛼 ≥ 360◦−arctan(1/2)+arctan(1/4)

360◦−arctan(1/2) ≈ 1.042.

2.4. Approximations in 2D

In the previous section, we saw that already bipartite graphs are NP-
hard to approximate within a specific factor for two-dimensional point
sets. We now show that we can utilize geometric properties to obtain
constant factor approximations for all objectives. For MSC-MS, we even
get constant factor approximations for any graph where we can obtain
a reasonably good coloring. Otherwise, we can provide approximation
factors based on the chromatic number for all three objectives.

2.4.1. Bipartite Graphs in 2D

Conversely, we give absolute and relative performance guarantees for
bipartite graphs in 2D.

Theorem 2.4.1 Every bipartite instance (𝑃1 ·∪ 𝑃2 , 𝐸) of MSC-MS has a scan
cover with makespan 360◦. Moreover, if 𝑃1 and 𝑃2 can be separated by a line,
there exists a scan cover with makespan 180◦.

Proof. We show that the following strategy yields a scan cover of time 360◦:
All points turn in clockwise direction, with the points in 𝑃1 starting with
heading north and the points in 𝑃2 with heading south; see Figure 2.14a
for an example. Note that the connecting line between any point 𝑝1 ∈ 𝑃1
and any point 𝑝2 ∈ 𝑃2 forms alternate angles with the parallel vertical
lines through 𝑝1 and 𝑝2, so both face each other when reaching this angle
during their rotation; see Figure 2.14b. In the case of separated point
sets, a rotation of 180◦ suffices to sweep the other set, as illustrated in
Figure 2.14c.

This result can directly be extended to arbitrary graphs.

Corollary 2.4.2 Every instance (𝑃, 𝐸) of MSC-MS has a scan cover with
makespan ⌈log2 |𝑃 |⌉ · 360◦.
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≤ Λ′

Figure 2.15.: Dividing headings into 2𝑠
sectors with angle Λ′ = 360◦/2𝑠 by insert-
ing 𝑠 lines. For every vertex, the incident
edges lie in at most two adjacent sectors
of size Λ′, because Λ ≤ Λ′.
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Figure 2.16.: An edge 𝑒 = 𝑣𝑤 that lies in
𝑐𝑖 for 𝑣, lies in 𝑐′

𝑖
= 𝑐𝑖+𝑠 for𝑤. If 𝑣 scans 𝑐1

and 𝑤 scans 𝑐′1 (both counterclockwise),
they scan 𝑒 at the same time 𝜑 due to the
alternate angles in the parallelogram.

Proof. We can recursively partition the graph in the middle with a
straight line ⌈log2 |𝑃 |⌉ times and apply Theorem 2.4.1. To concatenate
the ⌈log2 |𝑃 |⌉ scan covers, we need at most an additional 180◦ per scan
cover.

Figure 2.14.: (a) The vertices in 𝑃1 and
𝑃2 rotate clockwise and start by heading
north and south, respectively. (b) Due
to alternate angles, vertices of different
parts of the vertex partition face each
other at the same time. (c) When 𝑃1 and
𝑃2 are separated by a line, a scan time of
180◦ suffices.
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Theorem 2.4.1 yields an absolute bound for bipartite graphs. Now we give
a constant-factor approximation even for small optimal values.

Theorem 2.4.3 There is a 4.5-approximation for MSC-MS for bipartite
graphs 𝐺 = (𝑃1 ·∪ 𝑃2 , 𝐸) in 2D.

Proof. Consider an instance 𝐼 of MSC-MS in 2D and let Λ denote the
minimum angle such that for every vertex some Λ-cone contains all
its edges, i.e., Λ = max𝑝∈𝑃 Λ(𝑣) with 𝑃 = 𝑃1 ·∪ 𝑃2. Clearly, Λ is a lower
bound on the value 𝑂𝑃𝑇 of a minimum scan cover of 𝐼.

We use one of two strategies depending on Λ. If Λ ≥ 90◦, we use the
strategy of Theorem 2.4.1 which yields a scan cover of at most 360◦ and
hence a 4-approximation.

If Λ < 90◦, we use an adaptive strategy as follows. For each vertex, we
partition the set of headings [0, 360◦) into 2𝑠 sectors of size Λ′ = 360◦/2𝑠,
see Figure 2.15.

We choose 𝑠 maximal (and, thus, Λ′ minimal) such that Λ′ ≥ Λ. This
implies that the edges of every vertex are contained in at most two
adjacent sectors, see Figure 2.15. Note also that Λ′ < 3/2Λ, because
Λ > 360◦/2(𝑠+1) and 𝑠 ≥ 2.

Let the sectors be 𝑐𝑖 = [𝑖 · Λ′, (𝑖 + 1) · Λ′), for 𝑖 = 0, . . . , 2𝑠 − 1. Moreover,
𝑐′
𝑖

:= 𝑐𝑖+𝑠 mod 2𝑠 is the sector opposite of 𝑐𝑖 . Note that an edge 𝑒 = 𝑣𝑤 is
in the sector 𝑐𝑖 of 𝑣 if and only if 𝑒 is in the opposite sector 𝑐′

𝑖
of 𝑤, see

Figure 2.16.

Let 𝐶even be the set of sectors with even indices, 𝐶odd the one with
odd indices, and 𝐶′even and 𝐶′odd the set of opposite sectors, respectively.
Because the incident edges of each vertex are contained in at most two
adjacent sectors, every vertex has edges in (at most) one sector of 𝐶even
and one sector of 𝐶odd.

This allows the following strategy. In the first phase, the vertices in 𝑃1
scan the sector with edges in 𝐶even in clockwise direction, while the
vertices in 𝑃2 scan the sector in 𝐶′even. In the second phase, vertices in 𝑃1
scan the sector in 𝐶odd in counterclockwise direction, while the vertices
in 𝑃2 scan the sector in 𝐶′odd.
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Figure 2.17.: An example with Λ′ = 90◦.
𝑃1 and 𝑃2 are indicated by white and
black vertices, respectively. The dark sec-
tors are scanned in the first scan phase;
the light sectors in the second. Each scan
phase and the turning phase costs Λ′.

Figure 2.18.: Case (a).

Figure 2.19.: Case (b).

Figure 2.20.: Case (c).

As in Theorem 2.4.1, every edge is scanned in the first or second scan
phase due to the alternate angles. Clearly, each scan phase needs Λ′.
Between the two scan phases, every vertex 𝑣 needs to turn to change
its heading from the end heading of the first scan phase to the start
heading of the second. Because both sectors of 𝑣 are incident and due
to the reversed direction, the turning angle is at most Λ′; in particular,
either the end heading of the first sector is contained in the boundary
of the second sector or the two start headings of both phases coincide.
Figure 2.17 depicts an example scan cover. The resulting scan time is
3Λ′ ≤ 3 · 3/2 · Λ ≤ 4.5 · OPT.

Next, we complement the 4.5-approximation algorithm of Theorem 2.4.3
for MSC-MS in bipartite graphs in the plane by presenting an approxi-
mation algorithm for both remaining objectives.

Theorem 2.4.4 There exists a 2-approximation algorithm for MSC-BE and
MSC-TE for each bipartite graph 𝐺 = (𝑃1 ·∪ 𝑃2 , 𝐸) embedded in the plane.

Proof. Defining 𝑃 := 𝑃1 ∪ 𝑃2, the values max𝑝∈𝑃 Λ(𝑝) and ∑
𝑝∈𝑃 Λ(𝑝) are

clearly lower bounds on the value of a scan cover minimizing MSC-BE
and MSC-TE, respectively.

We use the same strategy based on alternating angles as in Theorem 2.4.1:
Defining start headings 𝑟(𝑝, 0) := 0◦ for 𝑝 ∈ 𝑃1 and 𝑟(𝑝, 0) := 180◦ for
𝑝 ∈ 𝑃2, the clockwise rotation scheme induces a scan cover 𝑆 by defining
the scan time 𝑆(𝑒) of edge 𝑒 as the time when its two vertices face each
other.

We now show that in the rotation scheme induced by 𝑆, i.e., every vertex
𝑝 starts to head toward its edge first scanned in 𝑆 and then follows the
order on 𝐸(𝑝) defined by 𝑆, the total rotation angle of each vertex 𝑝 is
at most 2Λ(𝑝). To this end, we consider three types of vertices; for an
illustration consider Figures 2.18 to 2.20.

Case (a): 𝑟(𝑝, 0) lies outside the Λ-cone of 𝑝. Then all edges of 𝑝 are
scanned by a clockwise rotation, one after the other. Hence, 𝑝 has a
total rotation angle of Λ(𝑝).

Case (b): 𝑟(𝑝, 0) lies inside the Λ-cone of 𝑝 and Λ(𝑝) ≥ 180◦. Going over
all edges clockwise takes at most a full rotation of 360◦ ≤ 2Λ(𝑝).

Case (c): 𝑟(𝑝, 0) lies inside the Λ-cone of 𝑝 and Λ(𝑝) < 180◦. Let 𝑒1 and
𝑒2 denote the bounding edges of the Λ-cone such that 𝑆(𝑒1) ≤ 𝑆(𝑒2).
By definition, the minimal angle of 𝑒1 and 𝑒2 is Λ(𝑝) < 180◦.
Splitting the Λ-cone of 𝑝 into two halves at 𝑟(𝑝, 0), 𝑝 scans the
edges in each half in clockwise direction, rotating an angle of Λ(𝑝)
counterclockwise between 𝑒1 and 𝑒2. It follows that the total rotation
angle of 𝑝 is at most 2Λ(𝑝).

As the total rotation angle is at most 2Λ(𝑝) for each vertex 𝑝, MSC-BE
and MSC-TE are upper bounded by 2 ·max𝑝∈𝑃 Λ(𝑝) and 2 ·∑𝑝∈𝑃 Λ(𝑝).
Together with the lower bounds provided above, this shows that this
scan cover is a 2-approximation for either objective.
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> 45◦

≥ 45◦

Figure 2.21.: Every vertex is assigned to
the (gray) sector to which it is heading
at time 45◦. The boundary of the reach-
able headings within 90◦ is shown in red.
Since the sector is half-open, two vertices
assigned to the same sector cannot reach
opposing headings and thus cannot scan
their edge.

Corollary 2.4.5 Let 𝐺 = (𝑃1 ·∪ 𝑃2 , 𝐸) be a bipartite graph embedded in the
plane such that the points of 𝑃1 and 𝑃2 can be separated by a line. Then an
optimal MSC-BE and MSC-TE of 𝐺 can be found in polynomial time.

Proof. We follow the same technique as in the proof of Theorem 2.4.4.
We may assume without loss of generality that the separating line is
vertical and that the points of 𝑃1 lie left of the line. Then, with the above
definitions, every vertex is in case (a), i.e., the total rotation angle for each
vertex 𝑝 is Λ(𝑝). Consequently, the resulting scan cover is optimal for
both MSC-BE and MSC-TE.

2.4.2. Graphs with Bounded Chromatic Number

Like in 1D, the makespan of a minimum scan cover in 2D has a strong
relation to the chromatic number. More specifically, we show that the
optimal scan time lies in Θ(log2 𝜒(𝐺)) and that for a given coloring of the
graph 𝐺 with 𝜒(𝐺)𝑐 colors, we can provide an 𝑂(𝑐)-approximation.

Lemma 2.4.6 Let 𝐺 be a graph embedded on a point set 𝑃 ⊂ ℝ𝑑 , 𝑑 > 1. If
there exists a scan cover of makespan 𝑇 > 0, then 𝐺 has a cut cover of size
𝑑 · ⌈𝑇/90◦⌉, i.e., 𝑐(𝐺) ≤ 𝑑 · ⌈𝑇/90◦⌉.

Proof. Partition the scan cover into ⌈𝑇/90◦⌉ intervals of length at most
90◦. For each interval 𝑖, we consider the set of edges that are scanned
within this interval, inducing a graph 𝐺𝑖 . We show that each 𝐺𝑖 is 2𝑑-
partite. Because 𝑐(𝐺𝑖) = ⌈log2(𝜒(𝐺𝑖))⌉ ≤ ⌈log2(2𝑑)⌉ = 𝑑 and 𝑐(𝐺) ≤∑
𝑖 𝑐(𝐺𝑖) ≤ ⌈𝑇/90◦⌉ · 𝑑, this implies the claim. We first consider the case

𝑑 = 2. We classify the points of 𝑃 into four sets, depending on their
turning behavior within the interval 𝑖. Each point has a quadrant [0, 90◦),
[90◦ , 180◦), [180◦ , 270◦), or [270◦ , 360◦) to which it is heading at the time
45◦; we assign each point this quadrant. Note that every point can only
leave its assigned quadrant by less than±45◦. Two points that are assigned
to the same quadrant are independent in 𝐺𝑖 : When their edge is scanned,
the headings of the two points have to be opposite, i.e., they differ by
exactly 180◦. Thus, the only case in which two point headings could
differ by 180◦ is if one leaves its quadrant by 45◦ in clockwise and the
other by 45◦ in counterclockwise direction. However, in this case, the
points would not have been assigned to the same half-open sector. For
an illustration consider Figure 2.21.

For 𝑑 ≥ 3, the idea is analogous. To simplify the argument we choose a
coordinate system, i.e., an orthonormal basis (ONB), such that, at time 45◦,
no point heads in a direction that lies on a lower-dimensional subspace
spanned by the basis vectors. Let 𝐵 denote the set of all potential basis
vectors in ℝ𝑑 , i.e., 𝐵 = ℝ𝑑 . For every point, we delete the line spanned by
its heading ℎ at time 45◦ and the (𝑑−1)-dimensional subspace orthogonal
to ℎ from 𝐵. The remaining set 𝐵′ is a 𝑑-dimensional space minus a finite
number of lower-dimensional subspaces. It follows by induction that 𝐵′
contains an ONB.

The points of 𝑃 are partitioned into 2𝑑 different sets, depending on the
orthant in which they are contained at time 45◦. Note that if two point
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headings of the same orthant differ by 180◦, their angle difference at time
45◦ is 90◦, i.e., they lie on a lower dimensional subspace spanned by the
basis vectors. This is a contradiction to the choice of the ONB.

Because 𝑐(𝐺) = ⌈log2 𝜒(𝐺)⌉, Lemma 2.4.6 has the following implica-
tion.

Lemma 2.4.7 Let 𝐼 be an instance of MSC-MS in ℝ𝑑 with graph 𝐺. Then
every scan cover has a makespan 𝑇 of at least Ω(log2 𝜒(𝐺)). More precisely,
it holds that 𝑇 ≥ 1/𝑑(⌈log2 𝜒(𝐺)⌉ − 𝑑) · 90◦.

Proof. Lemma 2.4.6 implies that ⌈log2 𝜒(𝐺)⌉ ≤ 𝑑⌈𝑇/90◦⌉ because 𝑐(𝐺) =
⌈log2 𝜒(𝐺)⌉. In particular, it holds that ⌈log2 𝜒(𝐺)⌉ ≤ 𝑑(𝑇/90◦ + 1). This is
equivalent to 1/𝑑(⌈log2 𝜒(𝐺)⌉ − 𝑑) · 90◦ ≤ 𝑇.

These insights have the following implications.

Theorem 2.4.8 For a 𝑘-colored graph 𝐺 embedded in 2D with 𝑘 ≤ 𝜒(𝐺) 𝑓
for some function 𝑓 , there exists an 𝑂( 𝑓 )-approximation for MSC-MS.

Proof. Partition 𝐺 into ⌈log2 𝑘⌉ bipartite graphs 𝐺𝑖 . By Theorem 2.4.3,
each 𝐺𝑖 can be scanned in time 𝛽 ·𝑂𝑃𝑇𝑖 , with 𝛽 = 4.5 and𝑂𝑃𝑇𝑖 denoting
the optimum of the instance induced by 𝐺𝑖 . Clearly, 𝑂𝑃𝑇𝑖 ≤ 𝑂𝑃𝑇, and
turning from the last scan of one bipartite graph to the next takes at
most a time of 𝑂𝑃𝑇. Hence, this scan cover needs a time of at most
(𝛽 + 1)𝑂𝑃𝑇 ⌈log2 𝑘⌉. If 𝜒(𝐺) ≤ 4, then

𝑂(⌈log2 𝑘⌉) ⊆ 𝑂(⌈ 𝑓 · log2(𝜒(𝐺))⌉) ⊆ 𝑂(⌈ 𝑓 · log2(4)⌉)
⊆ 𝑂(⌈2 𝑓 ⌉) = 𝑂( 𝑓 ).

If 𝜒(𝐺) ≥ 5, then log2(𝜒(𝐺)) > 0 and Lemma 2.4.7 ensures that 𝑂𝑃𝑇 ∈
Ω(log2(𝜒(𝐺))). Therefore, the performance guarantee is in

𝑂

(
log2 𝑘

log2(𝜒(𝐺))

)
= 𝑂

(
𝑓 · log2(𝜒(𝐺))
log2(𝜒(𝐺))

)
= 𝑂( 𝑓 ).

As a direct implication of Theorem 2.4.8, we get a spectrum of approxi-
mation algorithms for interesting special cases.

Corollary 2.4.9 MSC-MS in 2D allows the following approximation factors.

1. 𝑂(log2 𝑛) for every graph 𝐺 with 𝑛 vertices.
Furthermore, the minimum scan time lies in Θ(log2 𝜒(𝐺)).

2. 𝑂(1) for planar graphs.
3. 𝑂(log2 𝑑) for 𝑑-degenerate graphs.
4. 𝑂(1) for graphs of bounded treewidth.
5. 𝑂(1) for complete graphs.
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The following bound shows a refined approximation for complete
graphs.

Corollary 2.4.10 Consider the MSC-MS for complete graphs with 𝑛 vertices
in 2D. There is a 𝐶-approximation algorithm with 𝐶 → 6 for 𝑛 →∞.

Proof. We may assume without loss of generality that 𝑛 > 4. The mini-
mum scan time is at least (⌈log2(𝑛)⌉ − 2) · 45◦ > 0 due to Lemma 2.4.7.
For the upper bound, we partition the point set recursively into ⌈log2(𝑛)⌉
bipartite graphs by lines (alternating horizontal and vertical). Hence,
Theorem 2.4.1 allows us to scan each bipartite graph within 180◦. The
transition between two scan phases is at most 90◦. Therefore, the scan
time is upper bounded by ⌈log2(𝑛)⌉ · 180◦ + (⌈log2(𝑛)⌉ − 1) · 90◦. This
yields a performance guarantee of

270◦(⌈log2(𝑛)⌉ − 2) + 450◦

45◦(⌈log2(𝑛)⌉ − 2) = 6 + 10
(⌈log2(𝑛)⌉ − 2) .

The factor in Corollary 2.4.10 is 𝐶 ≤ 8 when 𝑛 ≥ 27 and 𝐶 ≤ 7 when
𝑛 ≥ 212.

The insights from Theorem 2.4.4 also yield an approximation algorithm
for 𝑘-colored graphs for MSC-TE and MSC-BE.

Corollary 2.4.11 For MSC-TE and MSC-BE of 𝑘-colored graphs embedded
in 2D, there exists an 𝑂 (log (𝑘))-approximation.

Proof. The edges of a 𝑘-colored graph 𝐺 can be covered by ⌈log2(𝑘)⌉
bipartite graphs 𝐺𝑖 [38]. For each 𝐺𝑖 , we use the 2-approximation of
Theorem 2.4.4. Clearly, for both objectives, the optimal scan time of 𝐺 is
lower bounded by the optimal scan time of every subgraph. Consequently,
scanning all 𝐺𝑖 takes at most ∑𝑖 2 · 𝑂𝑃𝑇(𝐺𝑖) ≤ 2⌈log2(𝑘)⌉ · 𝑂𝑃𝑇(𝐺),
where 𝑂𝑃𝑇 denotes the optimum scan time for the respective objec-
tive. For adjusting the headings between the scan covers of the bipar-
tite graphs, we need

(
⌈log2(𝑘)⌉ − 1

)
transition phases each of which

needs at most 𝑂𝑃𝑇(𝐺). Hence, the total scan time is upper bounded by(
3⌈log2 (𝑘)⌉ − 1

)
· 𝑂𝑃𝑇(𝐺).

Future Work 2.2.

Can we still provide constant-factor approximations if every scan
takes some time? This would force us to interrupt the sweeps and
make the efficient synchronization to match the alternating angles
more challenging. Another question is if we can preserve the constant
approximation factor if we have non-uniform rotation speeds. While
this can allow us to perform many scans earlier, the slowest satellite
could still dominate the makespan.
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Figure 2.22.: A refining step of the
geodesic grid.

2.5. 3D and Abstract Metrics

In the following, we observe that aMSC-MS generalizes the Path-TSP on
a star graph. Because all objectives are equal on stars, this also carries
over to the other two objectives.

Observation 2.5.1 Let 𝐺 = (𝑉, 𝐸) be a star on 𝑛 + 1 vertices with center 𝑣
and 𝛼 a metric transition cost function on 𝐸 × 𝐸. Then, an aMSC of (𝐺, 𝛼)
for any of the three objectives corresponds to a TSP-path of the complete graph
on 𝑉 \ {𝑣} with metric cost 𝑐(𝑢1 , 𝑢2) = 𝛼(𝑣𝑢1 , 𝑣𝑢2) and vice versa.

Observation 2.5.1 has two immediate consequences. Firstly, because the
metric Path-TSP is NP-hard, it follows that the abstract version is already
hard on stars.

Observation 2.5.2 aMSC is NP-hard for all three objectives, even for stars.

Secondly, a 3/2-approximation for metric Path-TSP [52, 53] can be applied.
We also note that a recent result provides an improved approximation
factor of 3/2 − 10−36 [54].

Observation 2.5.3 There exists a 3/2-approximation for aMSC on stars.

In contrast to 1D and 2D, we show that the chromatic number does not
provide an upper bound for MSC-MS in 3D and aMSC-MS.

Observation 2.5.4 There are instances of MSC-MS in 3𝐷 for which the
graph 𝐺 has 𝑛 vertices, 𝜒(𝐺) = 2 and every scan cover has a makespan in
Ω(
√
𝑛). There are instances of MSC-MS in ℝ𝑑 for which the graph 𝐺 has 𝑛

vertices, 𝑛 ∈ 𝑂(𝑑), 𝜒(𝐺) = 2 and every scan cover has a makespan in Ω(𝑛).

Proof. For the first claim, we consider a geodesic triangular grid with 𝑛
vertices on a sphere and embed a star graph such that its leaves are grid
points and the center of the star lies in the center of the sphere.

Clearly, the makespan is lower bounded by (𝑛 − 1) · ℓ , where ℓ is the
minimum angle between all edge pairs of the central vertex. We prove
our bound by refining the resolution of the grid, i.e., we iteratively insert
one vertex per edge as illustrated in Figure 2.22:

Because a triangulation with 𝑛 vertices has 3𝑛 − 6 edges, the number of
vertices in the refined grid is 𝑛 + 3𝑛 − 6 = 4𝑛 − 6, i.e., one refining step
roughly quadruples the number of vertices. Moreover, the minimum
angle between any two consecutive edges of the central vertex of the star is
approximately cut in half during a refining step. Due to the curvature, the
edges between the new vertices can actually be slightly less than half of the
minimum angle; for 𝑛 →∞, the difference becomes infinitesimal small.
Hence, 𝐺𝑖 has 𝑁 ∈ Θ(4𝑖𝑛) vertices and a minimum angle 𝛽 ∈ Θ(ℓ/2𝑖)
yielding a lower bound of Ω(𝑁𝛽) = Ω

(
(2𝑖𝑛 − 2−𝑖) · ℓ

)
⊆ Ω(2𝑖

√
𝑛) =

Ω(
√
𝑁). Note that already the expected length of randomly distributed

𝑛 vertices in a unit square is proportional to
√
𝑛 for large 𝑛 [55].
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r

Figure 2.23.: Root 𝑟 can choose its sched-
ule. The (cyclic) schedules of the children
are synchronized with the timing of its
parent. Because the graph is a tree, there
are no cyclic dependencies.

For the second claim, we consider a star on 𝑛 + 1 vertices for which each
of the 𝑛 leaves is placed on a different coordinate axis in ℝ𝑛 . Therefore,
the turn cost between any two edges is 90◦, and it takes 90◦(𝑛 − 1) to scan
all edge of the graph. Thus, we have a lower bound of Ω(𝑛).

The approximation technique for bipartite graphs in 2D relies on alternate
angles and fails for 3𝐷 or aMSC-MS. Nevertheless, we provide a 2.5-
approximation for trees based on Observation 2.5.1.

Theorem 2.5.5 There exists a 2.5-approximation for aMSC for trees.

Proof. For the minimum energy and bottleneck energy, we only have to
apply Observation 2.5.1 to every vertex. Because the graph is a tree, there
cannot be any cyclic dependencies and every scan order is feasible.

For aMSC-MS, we have to be more careful: Let 𝐼 = (𝐺, 𝛼) be an instance
of aMSC-MS for which 𝐺 is a tree, and let 𝑂𝑃𝑇 be the minimum scan
time of 𝐼. For every vertex 𝑣, we approximate an ordering of minimum
cost over all its incident edges 𝐸𝑣 . Let 𝑁(𝑣) denote the set of neighbors
of 𝑣. By Observation 2.5.1 such an ordering corresponds to a TSP-path.
Consequently, we may use a 3/2-approximation algorithm for metric
Path-TSP [52, 53]. Moreover, we enhance the edge ordering to a cyclic
ordering by inserting an edge from the last to the first edge; because
the cost function is metric, the cost of the additional edge is upper
bounded by the minimum cost ordering of the incident edges. Therefore,
the scan time ℓ𝑣 of the computed cyclic edge ordering of 𝑣 is at most
ℓ𝑣 ≤ (3/2 + 1)𝑂𝑃𝑇.

We construct a scan cover as follows: Every vertex follows its cyclic edge
ordering. The start headings of the vertices are chosen such that the scan
time of each edge 𝑒 = 𝑢𝑣 is synchronized at the vertices 𝑢 and 𝑣. To this
end, we choose some vertex 𝑟 as the root and denote the parent of each
vertex 𝑣 by 𝑝𝑎𝑟(𝑣) in the tree 𝐺 with respect to the root 𝑟. We scan the
edges of 𝑟 according to the cyclic edge orderings by starting with any
heading, see also Figure 2.23.

We then determine the start headings by a tree traversal (such as DFS or
BFS): Let 𝑣 be a vertex whose start heading has to be determined, and
assume the start heading of 𝑢 := 𝑝𝑎𝑟(𝑣) is already fixed. When 𝑢𝑣 is
scanned at time 𝑡 for 𝑢, then the cyclic ordering of 𝐸𝑣 is shifted, so that 𝑣
sees 𝑢𝑣 also at time 𝑡. If this time lies between two scans, we simply start
at the next incident edge and let the vertex wait for the appropriate time.
Because all vertices start at the same time, the resulting scan cover has a
scan time of at most max𝑣 ℓ𝑣 ≤ 2.5 · 𝑂𝑃𝑇.

Theorem 2.5.5 allows an approximation algorithm in terms of the ar-
boricity of the underlying graph. Recall that the arboricity of a graph
denotes the minimum number of forests into which its edges can be
partitioned.

Theorem 2.5.6 There exists a 3.5𝜏-approximation for the aMSC for graphs
of arboricity 𝜏.
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Figure 2.24.: A random instance with 15
vertices and 68 edges.

Figure 2.25.: A celestial instance with 15
vertices and 72 edges.

Figure 2.26.: Instance distribution of the
nearly 2000 instances. The auxiliary lines
indicate graphs with edge densities 50 %
(dashed) and 100 % (solid) of complete
graphs.

Proof. We compute a decomposition into 𝜏 forests in polynomial time [56].
To obtain a scan cover we use the approximation algorithm of Theo-
rem 2.5.5 for each forest and concatenate the resulting scan covers in
any order. Because the transition cost between any two forests is upper
bounded by the minimum scan time/cost 𝑂𝑃𝑇, the resulting scan cover
has time/cost of at most (2.5 + 1)𝑂𝑃𝑇 · 𝜏. Consequently, we obtain a
3.5𝜏-approximation.

Future Work 2.3.

Can we find an approximation algorithm that does not depend on
the arboricity or disprove its existence?

2.6. Computational Study

For our experimental evaluation, we considered two types of benchmark
instances in 2D, which we call random and celestial. Random instances
are generated by placing 𝑛 points chosen uniformly at random from the
unit square, with each edge chosen with probability 𝑝. Note that the
visible area of a satellite constellation on the same altitude in low Earth
orbit is fairly close to a set of co-planar points and hence the square (or
plane) serves as a reasonable approximation. An example can be seen in
Figure 2.24.

Celestial instances are inspired by real-world instances of satellites in
a shared orbit, in which they maintain their relative positions while
orbiting around a central body like Earth, as long as no explicit orbit-
changing maneuvers are carried out. They are characterized by a set of
points on a circle and a central circular obstacle. The points on the circle
are chosen uniformly at random; an edge exists if and only if its vertices
see each other, i.e., the edge does not intersect the central obstacle. An
example can be seen in Figure 2.25

The distribution of the nearly 2000 instances with up to 800 edges used
for our experiments can be seen in Figure 2.26.

All experiments were run on Intel Core i7-3770 with 3.4 GHz and 32 GB
of RAM.

2.6.1. Optimal Solutions

We developed three mixed integer programs (MIPs) and two constraint
programs (CPs) to solve instances to provable optimality. Note that not
every program solves all three problems. An experimental evaluation
is given at the end of this section. While we focus on two-dimensional
geometric instances, all formulations are applicable to all metric cost
functions.
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Figure 2.27.: Every edge 𝑒 has a scan time
variable 𝑡𝑒 ≥ 0.
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Figure 2.28.: We introduce variables
𝑥(𝑒 ,𝑒′) ∈ 𝔹 for every rotation (blue) be-
tween scanning two edges 𝑒 , 𝑒′.

te0 ∈ R+
0

te1 ≥ te0 + α(e0, e1)
if x(e0,e1)

e0
e1

x(e0,e1) ∈ B

te1 ∈ R+
0

te2 ∈ R+
0

te3 ∈ R+
0

Figure 2.29.: When using a rotation, the
necessary rotation time propagates.

Mixed Integer Program 1 (MSC-MS, MSC-TE, MSC-BE)

Our first MIP, denoted by MIP-1, uses two types of variables. The first
type are real variables 𝑡𝑒 ≥ 0 for all 𝑒 ∈ 𝐸, see Figure 2.27.

The second type are Boolean variables 𝑥(𝑒 ,𝑒′) for all ordered edge pairs
(𝑒 , 𝑒′) ∈ 𝐸2, see Figure 2.28.

In a computed solution, the variables 𝑡𝑒 define a scan cover in which
𝑆(𝑒) := 𝑡𝑒 and the value of 𝑥(𝑒 ,𝑒′) corresponds to �𝑆(𝑒 , 𝑒′). Because
�𝑆(𝑒 , 𝑒′) = 0 if |𝑒 ∩ 𝑒′ | ≠ 1, we directly set 𝑥(𝑒 ,𝑒′) := 0 in these cases.
Consequently, the objective functions can be expressed by substitution of
𝑆(𝑒)with 𝑡𝑒 and �𝑆(𝑒 , 𝑒′)with 𝑥(𝑒 ,𝑒′). Note that a min-max objective can
be implemented by a single additional real variable and one additional
constraint for each term in the objective.

We introduce a set of constraints to guarantee that the 𝑡-variables and
the 𝑥-variables arise from a valid scan cover. Because the angle function
𝛼 fulfills the triangle inequality, it suffices to ensure the time difference
of the 𝑡-variables for all 𝑥(𝑒 ,𝑒′) = 1, see Figure 2.29.

We know that 𝑀1 := ⌈log2 𝑛⌉ · 360◦ is an upper bound on the minimal
makespan for a graph 𝐺 in 2D with 𝑛 vertices (Corollary 2.4.2). Moreover,
a makespan of 𝑀2 := |𝐸 | · 180◦ allows scanning each edge individually,
and thus an optimal scan cover of MSC-BE and MSC-TE can be realized
in this makespan. Therefore, by inserting the correct 𝑀𝑖 , we can enforce
feasible scan times by using the Big-M method.

∀𝑣 ∈ 𝑉,∀(𝑒 , 𝑒′) ∈ 𝐸(𝑣)×𝐸(𝑣), 𝑒 ≠ 𝑒′ : 𝑡𝑒′ ≥ 𝑡𝑒+𝛼(𝑒 , 𝑒′)−(1−𝑥(𝑒 ,𝑒′))·𝑀𝑖 .

(2.7)
This leaves us with ensuring that the 𝑥-variables correspond to a feasible
scan cover. First, for every vertex 𝑣, an incident scanned edge 𝑒 has at
most one predecessor edge and one successor edge in the scan order.

∀𝑣 ∈ 𝑉, 𝑒 ∈ 𝐸(𝑣) :
∑

𝑒′∈𝐸(𝑣),𝑒′≠𝑒
𝑥(𝑒 ,𝑒′) ≤ 1 and

∑
𝑒′∈𝐸(𝑣),𝑒′≠𝑒

𝑥(𝑒′ ,𝑒) ≤ 1

(2.8)
Second, the total number of scanned edges at vertex 𝑣 is |𝐸(𝑣)|, i.e., the
number of consecutively scanned edge pairs, is |𝐸(𝑣)| − 1.

∀𝑣 ∈ 𝑉 :
∑

𝑒 ,𝑒′∈𝐸(𝑣)×𝐸(𝑣),𝑒≠𝑒′
𝑥(𝑒 ,𝑒′) = |𝐸(𝑣)| − 1 (2.9)

Together, Equations 2.8 and 2.9 enforce that every vertex has exactly
one first and one last scanned edge in the induced scan order. Because
Equation 2.7 enforces that the scan times obey the rotation times, there are
no cycles in the sequence defined by 𝑥 if all angles are positive. This fact
is very similar to the Miller-Tucker-Zemlin formulation of the TSP [57]. In
the presence of 0◦-angles, we dynamically add the following constraint
similar to the Dantzig formulation [58] to separate these cycles.

∀𝑣 ∈ 𝑉,∀𝑆 ⊊ 𝐸(𝑣), 𝑆 ≠ ∅ :
∑

𝑒∈𝑆,𝑒′∈𝐸(𝑣)\𝑆
𝑥(𝑒 ,𝑒′) + 𝑥(𝑒′ ,𝑒) ≥ 1 (2.10)
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Mixed Integer Program 2 (MSC-MS)

The abstract definition of the MSC-MS can be directly implemented as
a MIP, because absolute values can be implemented using a Boolean
variable. Some modern solvers like Gurobi actually provide this func-
tionality directly. Like for MIP-1 (Subsection 2.6.1), we have a real-valued
variable 𝑡𝑒 ≥ 0 for each 𝑒 ∈ 𝐸 that states its scan time. We try to keep the
maximum value assigned to any 𝑡𝑒 , 𝑒 ∈ 𝐸 as low as possible. For every
two incident edges 𝑣𝑤 and 𝑣𝑢, we only have the constraint that 𝑡𝑣𝑤 and
𝑡𝑣𝑢 have to be at least the time apart that 𝑣 needs to rotate between these
two. This results in the following MIP-2.

min max
𝑒∈𝐸

𝑡𝑒 (2.11)

s.t. |𝑡𝑣𝑤 − 𝑡𝑣𝑢 | ≥ 𝛼(𝑣𝑢, 𝑣𝑤) ∀𝑣𝑤, 𝑣𝑢 ∈ 𝐸 (2.12)
𝑡𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 (2.13)

The main difference to MIP-1 is that we do not keep a record of the actually
performed rotations. As a consequence, MIP-2 can only be used for MSC-
MS. However, on the positive side, we do not need to dynamically add
additional cycle constraints.

Mixed Integer Program 3 (MSC-TE, MSC-BE)

The third MIP (defined by Equations 2.8 to 2.10 and 2.14), denoted by
MIP-3, is a variant of MIP-1 (Subsection 2.6.1) in which the 𝑡-variables and
the corresponding Big-M based constraint (Equation 2.7) are removed.
As a consequence, we may use it for MSC-BE and MSC-TE, as they only
need the 𝑥-variables.

It is possible that the scan orders at the individual vertices are cycle
free, but that the overall schedule has a deadlock when the vertices
wait for each other, see Figures 2.30a and 2.30b. We therefore prohibit
directed cycles in the scan order defined by the 𝑥-variables (if not already
separated by Equation 2.10) dynamically via callbacks for every newly
found integral solution. Violated constraints can be found via a simple
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(a) Rotation scheme
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(b) Cycle in scan order

Figure 2.30.: A globally infeasible edge
order fulfilling Equations 2.8 and 2.9,
i.e., it is cycle-free at each vertex: (a) its
rotations scheme (b) the resulting edge
order that contains a cycle. An arc (𝑒 , 𝑒′)
in this graph corresponds to an 𝑥(𝑒 ,𝑒′) =
1.
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DFS search.

∀𝑘 ∈ ℕ|𝑉 | ,∀(𝑒0 , 𝑒1 , . . . , 𝑒𝑘−1) ∈ 𝐸𝑘 : 𝑥(𝑒𝑘−1 ,𝑒0) +
∑

𝑖=0,1,...𝑘−2
𝑥(𝑒𝑖 ,𝑒𝑖+1) ≤ 𝑘 − 1

(2.14)
Note that these cycles can also happen in MIP-1, but only with zero
rotation costs between the involved edges. Thus, they are irrelevant for
the solution, as all of these edges can be scanned at once.

Constraint Program 1 (MSC-MS)

Our first constraint program (denoted by CP-1) has the same formulation
as MIP-2. The only difference between the CP version and the MIP version
lies in the employed solver. In particular, absolute values can be modeled
directly.

Constraint Program 2 (MSC-TE, MSC-BE)

Our second constraint program (defined by Equations 2.8, 2.9 and 2.15),
denoted by CP-2, is similar to MIP-3 described in Subsection 2.6.1.
However, MIP-3 adds Equations 2.10 and 2.14 dynamically, which our
CP does not support. Because adding all these constraints directly results
in a prohibitively large formulation, we instead use a conditional variant
of the Miller-Tucker-Zemlin [57] formulation to eliminate cycles in the
scan order. Different from MIPs, we do not need the Big M method for
CPs, but can implement conditional constraints directly. More precisely,
we add the variables 𝑜𝑒 ∈ ℕ|𝐸 | , 𝑒 ∈ 𝐸 that state the cycle-free scan order
of the edges, which is enforced by the constraints

∀(𝑒 , 𝑒′) ∈ 𝐸 × 𝐸 : 𝑜𝑒′ − 𝑜𝑒 ≥ 1 if 𝑥(𝑒 ,𝑒′) = 1. (2.15)

Experimental Evaluation of Exact Algorithms

We used Gurobi (v9.0.1) for solving the MIPs and CP-SAT of Google’s
or-tools (v7.7.7810) for solving the CPs. CP-SAT, which is based on a
SAT solver, requires all coefficients and variables to be integral for
computational efficiency. We therefore convert the floating point values
to integral values including the first eight floating point digits (rounded,
decimal). While this weakens the accuracy, we calculated a theoretical
maximal deviation of less than 1 × 10−4 %, which we consider negligible
and comparable to the accuracy of the MIP solver.

We considered all solvers for the three objectives on the two instance
types described in the preliminaries. We evaluated how many instances
of which size could still be solved to provable optimality within a time
limit of 900 sec; see Figure 2.31. For MSC-MS, CP-1 has a clear lead,
solving 50 % of the instances with 242 ± 5% edges for random instances,
and 125 ± 5% edges for celestial instances. In our experiments, neither
MIPs was able to solve any instance with more than 70 edges to provable
optimality. For MSC-TE, MIP-1 and MIP-3 performed better than CP-2,
but all solvers could barely solve instances with more than 30 edges.
While MIP-1 has a more direct objective without auxiliary constraints
and variables as needed for MSC-MS, its actual performance was slightly
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worse. For MSC-BE, CP-2 performed considerably better; for celestial
instances, it can solve instances nearly twice as large (≥ 50 % at 48 ± 5%
edges) than the MIPs. Surprisingly, MIP-1 was slightly better than CP-2
for random instances, being able to solve 50 % of the instances with
61 ± 5% edges. Overall, CPs appear to be considerably more effective for
this kind of problem than MIPs, and random instances show to be easier
to solve than celestial ones.
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Figure 2.31.: Performance of the exact solver measured in how many instances with 𝑚 ± 5% edges can be solved to provable optimality
within 900 sec. The bump for CP-1 starting at 200 can be explained by the instance distribution that at this point includes more instances
with lower degree.

2.6.2. Good Solutions: Approximations and Heuristics

For larger instances (beyond the size that was solvable to provable
optimality), we developed additional methods based on approximation
algorithms and heuristics that provide good (but not provably optimal)
solutions.

Bipartite Approximation Algorithms with Coloring Partition

The constant-factor approximation algorithms for bipartite graphs extend
to general graphs by partitioning them into bipartite graphs and applying
the corresponding approximation algorithm to each of the bipartite
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subgraphs. More specifically, assigning a vector over {0, 1} with ⌈log2 𝑘⌉
bits to each color class of a 𝑘-colored graph induces a covering of its
edge set with ⌈log2 𝑘⌉ bipartite graphs; for more details see Motwani
and Naor [38]. For MSC-MS, this even preserves the approximation
factor. We use the well-engineered dsatur heuristic [59] for the Graph
Coloring problem, which is shipped with the pyclustering-package [60].
Concatenating the solutions of the bipartite graphs yields a feasible scan
cover; here we use a greedy approach to minimize the transition costs.
We denote this method by APX.

(Meta-)Heuristics

We also considered a number of (meta-)heuristics for optimizing the
three objectives.

Greedy: Scan the first edge regarding a given or random order and
then scan the edge that increases the objective the least, until all
edges are scanned. If multiple edges are equally good, the first one
regarding the order is selected. Many edges can be inserted without
extra cost and thus the initial edge order has a strong influence on
the result.

Iterated Local Search (ILS): This simple but potentially slow heuristic
considers for a given start solution (in this case of Greedy) all
possible swaps of edges; the locally best swap is carried out, until
no further improvement is possible.

Simulated Annealing (SA): This common variation of Iterated Local
Search performs swaps according to a probability based on the
Boltzmann function Boltzmann(𝑇, 𝑠1 , 𝑠2) = 𝑒

1/𝑇·(𝑠2−𝑠1), where 𝑠1 is
the objective value of the current best solution, 𝑠2 is the objective
value of the considered solution, and 𝑇 ∈ ℝ+ is the current tempera-
ture. The temperature decreases over time and with it the likelihood
of a worse solution being used. If the objective does not improve for
some time, the temperature is increased in order to escape the local
minimum. Due to randomization, we can run multiple searches in
parallel. We terminate if the solution has not improved for some
time.

Genetic Algorithm (GA): We start with an initial population of 200
solutions generated by a randomized Greedy. A solution is encoded
by assigning each edge a fractional number between 0.0 and 1.0,
similar to [61]. The scan order is determined by sorting the edges
by these numbers. In each round, we build a new population by
selecting the best 10 % of the old population (elitism) and then fill
the rest of the population with crossovers of the old generation.
For a crossover, we select two solutions of the old generation with
a probability matching their objective values (uniform selection) and
for each edge we choose with equal probability either the number
from the first or second solution (uniform crossover). If by chance,
two edges get the same number, we randomly change one of them
without influencing the order. Of the new generation of solutions,
3% are selected for mutation. A mutation applies Greedy with a
probability of 60% (the old order is used as initial edge order) or
changes each edge with a 3% probability to a new random number.
This is repeated until we either reach a time limit of 900 sec, 300
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generations, or 60 generations without improvement. The best
solution found during this process is then returned.

Experimental Evaluation of Approximations and Heuristics

Figure 2.32 shows experimental results for heuristically solving instances
with up to 800 edges with a 900 sec time limit (at which point the current
solution is returned). For MSC-MS, CP-1 yields the best results even for
larger instances (where it is aborted by the time limit) by a margin of 25 %
to 50 % to the next best algorithm, GA. For MSC-TE, the genetic algorithm
turned out to be the best approach for celestial instances by a margin
of over 50 % for the larger instances. Surprisingly, CP-1 (optimizing for
MSC-MS) yields slightly better solutions than the genetic algorithm for
random instances of MSC-TE. The most interesting results are for MSC-BE.
Here, CP-1 achieves the best results by a margin of over 20 % for random
instances, and GA (TE) the best results for celestial instances by a margin
of over 40 %. The excellent performance of CP-1 can be explained by a
strong correlation of MSC-MS and MSC-BE for random graphs, as shown
in Figure 2.33. The fact that GA (TE) is actually better in optimizing
MSC-BE than GA (BE) can be explained by the weaker gradients of
bottleneck objectives, because only a small part of the solution (the most
expensive vertex) actually contributes to the value. However, the initial
bump, at which the exact solver of MSC-BE still yields (better) solutions,
indicates that these solutions could be far from optimal and that there
may still be room for improvement.

Future Work 2.4.

Can we improve the performance of the heuristics for MSC-BE by
optimizing for an objective that is more sensitive to all satellites? For
example, we could do a lexicographic optimization over the sorted
rotation times of all satellites.

Overall, either CP-1 or GA (TE) yields the best solutions. CP-1 is especially
strong on random instances for all three objectives. The approximation
algorithm is usually among the worst. For MSC-MS, the algorithm
performs a full rotation for nearly all instances, as max𝑣∈𝑉 Λ(𝑣) is usually
above 180◦. Note that the factor can be worse than the approximation
factor 4.5 (resp. 2), because these are not bipartite graphs.

In Figure 2.33 (first row, fourth and last column) we can additionally
see that for MSC-MS the objective correlates strongly with the number
of edges for celestial instances and with the average degree for random
instances. Total energy seems to primarily correlate with the number
of edges for both types; our random instances are on average twice as
expensive. For MSC-BE, only random graphs seem to have a significant
correlation to MSC-MS and the average degree.

Future Work 2.5.

Do these results carry over to three-dimensional instances or instances
with heterogeneous rotation speeds?
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Figure 2.32.: Relative performance of the non-exact methods, measured by the obtained objective value divided by the best known value.
We used the same instances for the exact solver, so the better denominator creates a small bump for smaller instance sizes, in particular
for MSC-BE. Except for CP-1, the exact solvers did not yield good solutions for larger instances, if any at all, and are thus excluded for
readability. The plots show the mean and the corresponding 95 % confidence interval. We highlight the difference between the two
instance types by using different styles for the lines. Note that because these are relative values, a comparison of the performance over
the different objectives is not possible. ILS and SA are excluded for readability and perform only slightly better than Greedy.

2.7. Conclusion

In this chapter, we studied problems of Minimum Scan Cover with three
different and practically relevant objective functions, providing both
theoretical and practical contributions: The theoretical contributions con-
tain complexity and algorithmic results for all three objectives, showing
a strong relationship to the chromatic number when minimizing the
makespan. The presented practical methods are capable of computing
provably optimal solutions for smaller and near-optimal solutions for
larger instances.

In particular, we showed that the problems are provably hard even
for simple instances, like bipartite graphs in 2D, but also provided
approximation techniques whose approximation factors depend on the
chromatic number in 2D and on the arboricity in higher dimensions. We
developed multiple MIP and CP formulations, and demonstrated that
instances of MSC-MS can be solved reliably for instances with more than
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Figure 2.33.: Correlation and distribution of the best known objectives and instance properties. The diagonal shows the density
distribution of the x-values. The scatter plots have a point for every existing value pair, which allows detecting correlations.

100 edges using constraint programming, which performs much better
than our MIP approaches. While this approach generalizes also to 3D,
we only tested 2D instances; it remains to be seen if these results are
transferable to 3D. MSC-TE and MSC-BE can only be solved to optimality
for much smaller instances. For solving larger instances without guarantee
of optimality, we evaluated approximation algorithms and a spectrum
of meta-heuristics. Within the given time limit, CP-1 provided the best
solutions for all MSC-MS instances, and even the random instances for
MSC-TE and MSC-BE, despite only optimizing for MSC-MS. For celestial
instances of MSC-TE and MSC-BE, the genetic algorithm optimizing
for MSC-TE provides the best solutions. However, the results indicate
perspectives for improving the optimization of MSC-BE.

At this point, fully dynamic instances (in which the vertices change
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their relative positions to each other over time, such as for satellites
with different orbit parameters) are yet to be explored. These promise
to be even more challenging, due to bigger gaps between optimal and
suboptimal solutions, resulting from possibly long delays when a limited
communication window has been missed.

A similar optimization problem, where we do not want to scan every
edge but just broadcast a message, is considered in the next chapter.
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This chapter considers a problem in which a message must be broad-
cast with directional antennas that require expensive rotations for
communication. After some basic theoretical results, we focus on
solving the problem practically. Due to the superior performance
of constraint programming with CP-SAT, we perform a thorough
analysis of it.

3.1. Introduction

This chapter considers a problem similar to Minimum Scan Cover that
has been discussed in the previous chapter, but instead of scanning a set
of edges, we want to send a message to all satellites within the network.

Providing instructions to all members of a distributed group is a fun-
damental task for many types of team missions. In terrestrial settings,
this can usually be achieved by broadcasting to all recipients in parallel,
requiring only a single transmission. However, for long-distance space
missions, omnidirectional transmission can no longer be employed, due
to significant loss in signal strength. Instead, transferring data is accom-
plished with the help of directional antennas, requiring a highly focused
communication beam that is targeted directly at the intended recipient.

Figure 3.1.: The space probe Voyager and
its directional antenna for transmitting
data. (Image CC by NASA.)

A striking example of such an antenna is on the space probe Voyager, as
can be seen in Figure 3.1. Satellites in earth-orbit use similar, but smaller,
antennas. These transmissions must be performed individually, involving
maneuvers for achieving appropriate antenna orientation; the time for
such a maneuver is proportional to the required angle of rotation, with
negligible time for the actual transmission itself. The overall process
allows one parallel component: a team member that has already been
“activated” by having received the data, may relay this to other partners,
motivating the use of intricate communication trees to achieve rapid
dissemination of information to all members of a swarm of spacecraft.

This same method can also be utilized if we want to quickly distribute
data, e.g., an important update. In the following, we consider a basic
version of the problem under following assumptions: the agents are static
points in the Euclidean space, there are no delays in transmission, and
the transmission cone is modeled as a ray. Contrary to the model in
Minimum Scan Cover of the previous chapter, we only require the sender
to point to the receiver, but the receiver does not need to be adjusted.

Problem 3.1.1 (Angular Freeze-Tag (AFT)) Given a graph 𝐺 = (𝑃, 𝐸)
with 𝑃 = {𝑝0 , 𝑝1 , 𝑝2 , . . .} being a set of agent positions in 𝑑-dimensional
space, each agent 𝑝 ∈ 𝑃 has an initial heading which we represent by an
auxiliary point 𝑠𝑝 that this heading aims at. At time 𝑡 = 0, only 𝑝0 is active,
while all other agents are inactive. An agent 𝑝𝑖 is activated by an active,
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Figure 3.2.: Activating all agents by rota-
tions in AFT: 𝑝0 first activates 𝑝2 which
then activates 𝑝3, while 𝑝0 rotates back
to activate 𝑝1.

Figure 3.3.: Rendition of the optical mod-
ule of the Lunar Laser Communication
Demonstration that enables a satellite in
lunar orbit to communicate with earth
with high data rates. (Image CC by
NASA.)

adjacent agent 𝑝 𝑗 , whose heading aims straight at 𝑝𝑖 ; adjusting this heading
incurs a cost equal to the required angular change. Let 𝛼(𝑝𝑖𝑝 𝑗 , 𝑝𝑖𝑝𝑘) ∈ ℝ+0
denote the cost of 𝑝𝑖 to change the heading from 𝑝 𝑗 to 𝑝𝑘 . The objective is to
minimize the time 𝑇 until all agents are activated, i.e., minimize the makespan
of the overall activation schedule.

An example can be seen in Figure 3.2. If you desire a more thorough
definition, you can also skip directly to the mixed integer programming
or constraint programming formulation in Section 3.4 (Exact Algorithms)
on page 52.

While it is technically possible to mix a directed antenna for sending
with an omnidirectional for receiving, it is much less effective and would
probably require two antennas instead of one. Also, the emerging laser
communication techniques, as can be seen in Figure 3.3, appear to use
the same optics for the laser and the sensor. This model is still at least
theoretically feasible, and provides a nice geometric problem similar
to the freeze-tag game and problem where the receiver is completely
frozen until being activated. One can easily imagine a game variant of
freeze-tag with water pistols that corresponds to AFT. Nonetheless, we
also adapt the most promising algorithms for AFT to the (for satellites)
more practical variant, in which both sides have to adjust.

Problem 3.1.2 (Bidirectional Angular Freeze-Tag (BAFT)) Every point
𝑝 ∈ 𝑃 is now allowed to rotate without activation (starting at its initial
heading). A point can still only activate neighbors if it already has been
activated itself. For an activation, both sides have to head toward each other at
the same time.

Future Work 3.1.

How does the problem change if the satellites can activate all agents
within a cone of a specific angle? By choosing a very small angle, we
can reuse the hardness results of the current variant, but for larger
angles we may obtain better schedules.

3.1.1. Related Work

The Angular Freeze-Tag Problem is an adaptation of the freeze-tag
problem. In the freeze-tag problem, activating an inactive robot is per-
formed by moving an active robot next to it. The objective (to minimize
the makespan of the overall schedule) is the same as for our current
problem, but the cost of an activation (the distance to the robot instead
of the angle) is different. This problem is NP-hard even for star graphs,
but there are polynomial-time approximation schemes (PTAS) for star
graphs and geometrically-embedded instances [62]. Unweighted graphs
are considered in [63] and a set of heuristics is evaluated in [64]. There
are further results on a variant with 𝑘 activated agents in [65] and on the
online variant in [66].

In case this content has been skipped, we refer the curious reader to the
related work of the similar Minimum Scan Cover in Subsection 2.1.2.
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3.1.2. Overview

In the following, we focus on the problem in 2D and first show that AFT
cannot be approximated better than 5/3, even for bipartite graphs, and
provide a 9-approximation algorithm for any graph. We also show the
same hardness result for the bidirectional variant. Afterward, we come
to the primary part of this chapter, which considers computing optimal
and heuristic solutions for AFT. We propose mixed integer programming
and constraint programming formulations in Section 3.4. For constraint
programming, we provide an explanation of the techniques used by the
constraint programming solver CP-SAT, that already yielded a superior
performance for Minimum Scan Cover. We continue with engineering
heuristics in Section 3.5, and perform an experimental evaluation of all
approaches in Section 3.6. At the end of this chapter, we discuss how
to adapt the constraint program and the greedy algorithm to BAFT in
Section 3.7.

3.2. Approximation Hardness

We show that the AFT is computationally hard, even to approximate.

Theorem 3.2.1 A 𝑐-approximation algorithm for the AFT with 𝑐 < 5/3
implies P = NP, even for complete or bipartite graphs.

Proof. We give a reduction from Satisfiability; see Figure 3.4 for a
sketch. Our construction has a solution with a makespan of 3� if it
is satisfiable and 5� otherwise, where � > 0 is a sufficiently small angle.
Our construction uses five different types of agents, as follows.

▶ The start agent 𝑝0 directly activates the decision agents, but does not
have any other agents within 5�.

▶ For each variable we have a decision agent and two variable assignment
agents (one each for true and false) in opposing angles of �, but
no further agents within a 5� rotation range. It is directly activated
from 𝑝0.

▶ The variable assignment agent directly activates all corresponding
literal agents, but has no further agents in a 4� rotation range. The
earliest possible activation time is �. Only one of the two agents for
each variable can be activated at time � (by the decision agent), the
other one has to wait an additional 2�.

▶ For each literal there is a literal agent that has its clause agent a
rotation of 2� away, but no further agents within 4�. The earliest
possible activation time is �.

▶ For each clause there is a clause agent that has no agent within its
2� rotation range. Its earliest possible activation time is 3�.

A clause agent can only be activated by its literal agents in less than 5�,
and a literal agent is either activated at � or 3�, depending on which
of the variable assignment agents got activated first. Thus, a clause is
activated at 3� if and only if a corresponding variable agent has been
activated in time; otherwise, it takes 5�.
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Figure 3.4.: Sketch of the hardness con-
struction. Red variable agents are 2�
from their designated heading, which
they can target upon activation. The deci-
sion agent for each variable is a rotation
� from both of its corresponding vari-
able assignment agents. A schedule of
makespan 3� exists if and only if there is
a satisfying truth assignment; otherwise,
the makespan is at least 5�.

x1 _ x2 _ x3 x1 _ x2 _ x3 x1 x1 _ x2
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x3 x3

x2
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start agentStart

We only need edges from the start agent to the decision agents, from
the decision agents to the variable assignment agents, from the variable
assignment agents to the literal agents, and from the literal agents to the
clause agents. This is a bipartite graph, with the literal and the decision
agents in one class, and the other agents in the other class. We can
arbitrarily fill up the other edges to obtain a complete graph.

We can obtain the same result with a different construction for BAFT,
where all satellites can rotate from the beginning, but both sides need to
head toward each other for an activation.

Theorem 3.2.2 A 𝑐-approximation algorithm for the BAFT with 𝑐 < 5/3
implies P = NP, even for bipartite graphs.

Proof. We again give a reduction from Satisfiability with a corresponding
sketch in Figure 3.5. Five kinds of agents are placed at (nearly) the same
positions: The start agent, one variable agent for each variable, one positive
literal agent for every positive literal occurrence in each clause, analogous
negative literal agents for negative literals, and one clause agent for each
clause. If a positive literal occurs in, e.g., 3 clauses, then there are three
corresponding positive literal agents. The positions of the variable agents,
positive literal agents, negative literal agents, and clause agents form a
square with 90◦ angles, with the start agent placed in the middle. The
start agent is directed at and connected with all the variable agents. The
variable agents are directed at the start, and are additionally connected to
their corresponding positive and negative literal agents. The positive and
negative literal agents are heading toward their corresponding variable
agent, and are additionally only connected to their one clause at an angle
of 90◦. Finally, the clause agents head away from the construct and are
only connected to their positive and negative literal agents. They need
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x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1
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Start

Clauses
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135◦
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Figure 3.5.: Hardness construction for
BAFT. Edges are shown in gray. The
agents within the blue circles are nearly
at the same position. The whole construc-
tion forms a square with the start agent
in the middle. See text for construction
description.

135◦ to reach either the positive or negative literals, and the positive and
negative literals are 90◦ apart from each other.

If the formula is satisfiable, we can create a schedule of 135◦ rotation
time as follows: The variable agents are activated immediately and
rotate toward their positive or negative literal agents, according to their
assignment. The corresponding satisfied literal agents are activated after
45◦ rotation time. Their only non-activated neighbor is the clause it is
assigned to, which it can activate after a 90◦ rotation after 135◦ rotation
time. Because we assumed the assignment to be satisfying, every clause
agent is activated at that time. In parallel, the variable agents rotate to the
opposite literal agents and also activate them after a 90◦ rotation after
135◦ rotation time. Thus, all agents are activated after 135◦ rotation time,
and this is the fastest way possible.

To conclude the proof, we have to show that a schedule of 135◦ rotation
time implies the existence of a feasible assignment and that the next best
schedule has a rotation time of 225◦.

The literal agents are only connected to their variable agent and to their
assigned clause agent. Thus, they can only activate their clause agent, and
this only 90◦ after their own activation. They may be activated by their
clause agent, but can activate no other agents in this case. This implies
that every literal agent is either activated at 45◦ or 135◦. If all literal agents
of a clause are activated after 135◦ rotation time, the clause agent can only
be activated after 225◦ rotation time. Otherwise, the clause agent can be
activated after 135◦ rotation time, but not earlier. By this construction,
only the positive or the negative literal agents can be activated after 45◦
rotation time.

If we have a schedule of 135◦ rotation time, every clause agent needs to
have a literal agent that has been activated within 45◦ rotation time. This
can happen only by activation by the corresponding variable agent, which
can only activate its positive or the negative literals within the time, but
not both. A literal agent always needs a 90◦ rotation to activate its clause,
because if it is activated by its only other neighbor, the variable agent, it
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needs 90◦ to rotate. If it is activated by its clause agent, it has no further
neighbors to activate. This implies a satisfiable variable assignment. Due
to the square construction, all activations happen at 45◦+ 𝑖 ·90◦ (assuming
no unnecessary pauses are made), and if an activation of all clause literals
has not been possible until 135◦, the makespan is at least 225◦.

3.3. Approximation Algorithm

We can provide a simple constant factor approximation, based on a result
by Beck [67] on the linear search problem. In that scenario, an agent has to
locate a hidden object in a one-dimensional environment; from a given
starting location, the best strategy for this online problem is to alternate
between going left and right, while doubling the search depth in each
iteration. This yields a total search distance that is within a factor of 9 of
the optimum.

Theorem 3.3.1 There is a 9-approximation algorithm for the AFT in 2D,
even for unknown agent locations and headings, assuming a lower bound of
� > 0 for the rotational angle of any activating agent.

Proof. As soon as an agent is activated, it follows the doubling strategy
(starting at �) from linear search, carried out for rotation. Thus, it follows
by induction, that any agent 𝑝𝑖 that gets activated by 𝑇𝑖 in an optimal
schedule is activated within 9𝑇𝑖 . This is due to the fact that every prede-
cessor in the optimal solution needs at most nine times the necessary
rotations in the approximated solution. Additionally, it does not matter
if another agent activates the agent before the optimal predecessor, as
the receiver does not have to adjust in the variant of this problem. This
approach is oblivious to the actual underlying graph, and works for every
connected graph.

Note that we cannot apply the refined technique by Bose et al. [68] for
linear search, as it requires both an upper and a lower bound on the
search distance.

Future Work 3.2.

Can we obtain an approximation algorithm for the bidirectional vari-
ant? Can we obtain an approximation algorithm for three-dimensional
instances?

3.4. Exact Algorithms

This problem can be expressed as mixed integer program (MIP) and as
constraint program (CP), which allows us to obtain optimal solutions
for many instances using advanced solvers, such as Gurobi [69] or
Google’s OR-Tools [70]. For many hard problems, such techniques can
still yield optimal solutions for reasonably large instances. Even if no
optimal solution can be achieved, often at least a good solution including
bounds can be computed. If sufficiently large instances can be solved
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Figure 3.6.: Every agent gets an activa-
tion time variable.

with these techniques, we can consider ourselves lucky and do not need
to investigate further algorithms. If only smaller instances can be solved,
these solutions can still be valuable for theoretical analysis and further
algorithm development. In this chapter, we also take a deeper look into
the performance of constraint programming for such problems after the
superior performance for Minimum Scan Cover in the previous chapter.

While MIPs and CPs look very similar in their formulation, their under-
lying techniques, and therefore their performance, can be fundamentally
different. Mixed integer programming is based on linear programming,
and can utilize many powerful theoretical insights. MIPs are usually
solved by branch and cut algorithms based on the linear relaxation.
Constraint programming formulations are a superset of mixed integer
programming formulations, and our solver, CP-SAT of Google OR-Tools,
utilizes a SAT-solver in the background to solve them. While every
MIP can be expressed as a CP, most constraint programming solvers
allow more advanced constraints. The more specific the constraint is,
the better the chances are that the solver can utilize powerful propa-
gators. At the same time, CP-SAT does not allow callbacks such that
common exponential constraints for MIPS, e.g., the subtour constraints of
Dantzig [58], cannot be efficiently implemented. We now first present the
MIP-formulation and then a CP-formulation, for which we do some ad-
ditional evaluations to make the best design decisions. The performance
of both approaches is compared in Subsection 3.6.2.

3.4.1. Mixed Integer Programming

In this section, we describe how to formulate the Angular Freeze-Tag
Problem as a mixed integer program to be solved with, e.g., Gurobi or
CPLEX.

First, we need fractional variables that represent the activation times of
each agent, see Figure 3.6. Let these variables be denoted by 𝑡𝑝 ∈ ℝ+0 for
𝑝 ∈ 𝑃. The activation time variable for the start agent 𝑝0 can directly be
replaced by the constant 0.0, as it is active from the beginning.

This already enables us to formulate the objective function:

min max
𝑝∈𝑃

𝑡𝑝 (3.1)

A min max-objective can be implemented as a linear program by mini-
mizing an auxiliary variable 𝑚 ∈ ℝ+0 and adding the constraints 𝑚 ≥ 𝑡𝑝
for all activation time variables 𝑡𝑝 with 𝑝 ∈ 𝑃.

Next, we need to encode the time dependencies. Let 𝑝 activate its neighbor
𝑛. If 𝑛 is the first neighbor that 𝑝 activates, the activation time difference
|𝑡𝑝 − 𝑡𝑛 | = 𝑡𝑛 − 𝑡𝑝 needs to be at least the time that 𝑝 needs to rotate to 𝑛
from its start position. If 𝑝 activates 𝑛′ before it activates 𝑛, the activation
time difference |𝑡𝑛 − 𝑡𝑛′ | = 𝑡𝑛′ − 𝑡𝑛 needs to be at least the time that 𝑝
needs to rotate from 𝑛′ to 𝑛.

To enforce these constraints, we first need to encode the rotation pattern
of each agent 𝑝 ∈ 𝑃. To simplify the notation, let 𝐻(𝑝) = 𝑁(𝑝) ∪ {𝑠𝑝} be
the extended neighborhood including a virtual neighbor for the initial
heading. Let 𝑥𝑝𝑛,𝑛′ ∈ 𝔹 denote if 𝑝 activates its neighbor 𝑛′ ∈ 𝑁(𝑝) after
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Figure 3.7.: The rotation pattern only
needs direct rotations (blue) between
neighbors and start headings.
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Figure 3.8.: Whenever we do a rotation,
the necessary rotation times need to prop-
agate to the activation times.

heading to 𝑛 ∈ 𝐻(𝑝). This gives us a small set of directed rotations that
are sufficient to encode any optimal rotation pattern, see Figure 3.7.

Enforcing an agent 𝑝 ∈ 𝑃 − 𝑝0 to get activated is simply enforcing that
one of its neighbors rotates toward it.

∀𝑝 ∈ 𝑃 − 𝑝0 :
∑

𝑝′∈𝑁(𝑝)

∑
ℎ∈𝐻(𝑝′)

𝑥
𝑝′

ℎ,𝑝
= 1 (3.2)

Of course, 𝑝0 is already activated from the beginning and does not need
to be activated again. This can still allow activation cycles, where a cycle
of non-activated agents activate each other. To prevent this, we can add
the constraints

∀𝑆 ⊊ 𝑃, 𝑝0 ∈ 𝑆 :
∑
𝑝∈𝑆

∑
𝑛∈𝐻(𝑝)

𝑛′∈𝑁(𝑝)\𝑆

𝑥
𝑝

𝑛,𝑛′ ≥ 1 (3.3)

which enforce that for every subset of agents 𝑆 ⊊ 𝑃 that contains the
start agent 𝑝0 but is incomplete, i.e., 𝑆 ≠ 𝑃, an activation of the remaining
agents 𝑃 \ 𝑆 by 𝑆 must happen. Every activation chain, hence, is rooted
in 𝑝0.

A further problem that can occur is that the rotation pattern of an agent
is infeasible. Every rotation pattern for an agent 𝑝 ∈ 𝑃 needs to begin at
the start heading and be coherent, i.e., be a directed Hamiltonian path
on a subset of agents of 𝐻(𝑝) originating at 𝑠𝑝 . Such paths are a common
element of many combinatorial problems and their corresponding integer
programming formulations. The corresponding constraints are, hence,
relatively straight forward:

If 𝑝 rotates from 𝑛 ∈ 𝑁(𝑝) to 𝑛′ ∈ 𝑁(𝑝),

1. 𝑛 cannot have further successors and
2. 𝑛 needs a predecessor 𝑛′′ ∈ 𝐻(𝑝).

This can be expressed by

∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁(𝑝) :
∑

𝑛′′∈𝐻(𝑝)
𝑥
𝑝

𝑛′′ ,𝑛 ≥
∑

𝑛′∈𝑁(𝑝)
𝑥
𝑝

𝑛,𝑛′ (3.4)

and
∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁(𝑝) :

∑
𝑛′′∈𝐻(𝑝)

𝑥
𝑝

𝑛′′ ,𝑛 ≤ 1 (3.5)

We also have to make sure that Equation 3.4 is not tricked by cycles, but
the rotation pattern is indeed a path starting at 𝑠𝑝 . This can be performed
by classical subtour elimination constraints.

∀𝑝 ∈ 𝑃, 𝑆 ⊆ 𝑁(𝑝) :
∑
𝑛,𝑛′∈𝑆

𝑥
𝑝

𝑛,𝑛′ ≤ |𝑆 | − 1 (3.6)

We now have feasible rotation patterns at each agent, which already
describe a feasible but arbitrary solution. For optimizing the makespan,
we need to synchronize the activation time variables with the rotation
patterns: whenever we perform a rotation, the necessary rotation times
must propagate to the activation time variables, see Figure 3.8.
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1: Note that, contrary to MIPs, the set of
allowed constraints is not strictly defined
for CPs, and depends on the concrete
solver. The following section assumes
that we use CP-SAT.

If 𝑝 activates 𝑛 first, i.e., 𝑥𝑝𝑠𝑝 ,𝑛 = true, we need to enforce that 𝑡𝑛 is at
least 𝑡𝑝 plus the time 𝑝 needs to rotate to 𝑛 from its initial heading.

∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁(𝑝) : 𝑡𝑛 ≥ 𝑡𝑝 + 𝛼(𝑝𝑠𝑝 , 𝑝𝑛) if 𝑥𝑝𝑝𝑠 ,𝑛 (3.7)

If 𝑝 activates 𝑛 after activating 𝑛′, i.e., 𝑥𝑝𝑛′ ,𝑛 = true, we need to enforce
that 𝑡𝑛 is at least 𝑡𝑛′ plus the time 𝑝 needs to rotate from 𝑛′ to 𝑛.

∀𝑝 ∈ 𝑃, 𝑛 ≠ 𝑛′ ∈ 𝑁(𝑝) : 𝑡𝑛 ≥ 𝑡𝑛′ + 𝛼(𝑝𝑛′, 𝑝𝑛) if 𝑥𝑝𝑛′ ,𝑛 (3.8)

Of course, we cannot implement conditional constraints directly, but we
can make use of the Big-M method. Let 𝑇𝑈𝐵 be an upper bound on the
optimal makespan, e.g., computed by a greedy algorithm. Whenever,
the corresponding rotation variable is false, the inequality are trivially
fulfilled by subtracting the upper bound. This results in the following
linear constraints:

∀𝑝 ∈ 𝑃, 𝑛 ∈ 𝑁(𝑝) :𝑡𝑛 ≥ 𝑡𝑝 + 𝛼(𝑝𝑠𝑝 , 𝑝𝑛) − (1 − 𝑥𝑝𝑝𝑠 ,𝑛) · 𝑇𝑈𝐵 (3.9)

∀𝑝 ∈ 𝑃, 𝑛 ≠ 𝑛′ ∈ 𝑁(𝑝) :𝑡𝑛 ≥ 𝑡𝑛′ + 𝛼(𝑝𝑛′, 𝑝𝑛) − (1 − 𝑥𝑝𝑛′ ,𝑛) · 𝑇𝑈𝐵 (3.10)

Combining all of these constraints results in a feasible and complete
(regarding optimality) description of the solution space as a mixed integer
program that can be solved by corresponding solvers.

3.4.2. Constraint Programming

We now describe how one can formulate the problem as a constraint
program that can be solved using CP-SAT1. After the formulation, we
directly analyze some design decisions via some quick experimental
evaluations.

There are two important pieces of information we need for a solution:
(1) when does an agent get activated, and (2) by which agent does it get
activated. For this, we use two types of variables.

1. 𝑡𝑝 ∈ ℝ+0 for 𝑝 ∈ 𝑃 denotes the activation time. An upper bound
for these variables is computed by the greedy algorithm (see
Subsection 3.5.2). We directly replace 𝑝0 with the constant 0, because
it is activated in the beginning.

2. 𝑥𝑝→𝑝′ ∈ 𝔹 for 𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑁(𝑝) − 𝑝0 states if 𝑝 activates 𝑝′. We
exclude 𝑝′ = 𝑝0 as 𝑝0 does not need activation. Contrary to the
MIP, we do not explicitly express the concrete rotations of the
satellites. The rotations are implicitly contained in the activation
time variables.

The objective function can be expressed as

min max
𝑝∈𝑃

𝑡𝑝 . (3.11)

We discuss the two options to implement such an objective in CP-SAT in a
later part of this section. Let us now add the corresponding constraints.
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CP-SAT actually does not support com-
posite expressions for if-conditions and
absolute values, such that we need to
introduce auxiliary variables for these.

First, we ensure that every agent gets activated.

∀𝑝 ∈ 𝑃 − 𝑝0 :
∑

𝑛∈𝑁(𝑝)
𝑥𝑛→𝑝 = 1 (3.12)

To make sure that the 𝑥-variables actually are a tree and do not contain
cyclic activations, we add a class of variables. Let 𝑖𝑝 ∈ ℕ |𝑉 | denote the
order in the tree with 𝑖𝑝0 = 0, such that children have higher numbers
than their parents. We can enforce correct values by

∀𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑁(𝑝) − 𝑝0 : 𝑥𝑝→𝑝′ ⇒ 𝑖𝑝 ≤ 𝑖𝑝′ − 1. (3.13)

Now we only have to ensure that the scan times are actually feasible. The
following constraint ensures that the activating agent has enough time to
rotate from 𝑠𝑝 .

∀𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑁(𝑝) − 𝑝0 : 𝑥𝑝→𝑝′ ⇒ 𝑡𝑝′ ≥ 𝑡𝑝 + 𝛼(𝑝𝑠𝑝 , 𝑝𝑝′) (3.14)

Due to the triangle inequality, it does not matter if 𝑝′ is actually the first
to be activated by 𝑝. The next constraint ensures that between any two
activations performed by an agent, there is sufficient time to rotate. Note
that this constraint also requires 𝛼 to fulfill the triangle inequality, as it is
indifferent regarding the concrete order.

∀𝑝 ∈ 𝑃, 𝑛, 𝑛′ ∈ 𝑁(𝑝) − 𝑝0 , 𝑛 ≠ 𝑛′ :
𝑥𝑝→𝑛 ∧ 𝑥𝑝→𝑛′ ⇒ |𝑡𝑛 − 𝑡𝑛′ | ≥ 𝛼(𝑝𝑛, 𝑝𝑛′) (3.15)

We now continue to analyze the accuracy, influence of the resolution,
importance of tight variable bounds, usage of more powerful constraints,
modeling of the min max-objective, and the determinism of CP-SAT. This
part purposefully goes deeper on the techniques of CP-SAT than the
other chapters to highlight not only the usage of constraint programming
for AFT, but also more general properties of CP-SAT that can carry over
to other optimization problems. Readers not interested in the details of
constraint programming can skip to Section 3.5 (Heuristics) on page 68.

Accuracy of CP-SAT

A restriction of CP-SAT is that it only allows integral variables and con-
stants. Thus, we need to convert the fractional values to large integral
numbers via multiplying and rounding by a large number. Reasonably
large numbers result in an accuracy that is comparable to Gurobi, which
operates on inexact floating point numbers. Gurobi performs some auto-
matic optimizations to improve the numeric accuracy and performance
of the given input. For CP-SAT, we have to do these optimizations by
ourselves. In the remainder of the section, we analyze the accuracy and
performance of CP-SAT for different resolutions.

Continuous equality constraints can become problematic with CP-SAT.
They induce an intersection of two hyperplanes, which is most likely not
perfectly aligned with the integral grid. In the worst case scenario, this
can lead to infeasibility in the integral domain. MIP-solvers, like Gurobi,
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automatically introduce feasibility gaps. For CP-SAT, we potentially have
to do this ourselves. Fortunately, this problem does not apply to AFT.
The only part we need to worry about is the solution quality, because
the inequality constraints can potentially propagate and accumulate
rounding errors: activation times depend on other activation times,
which themselves depend on other activation times, and every such
step can introduce a small error. We now prove that this error remains
reasonably small.

We know that every value can be off by at most one unit in the integral
domain (by rounding either up or down). This allows us to limit the
maximal absolute error linear to the number of agents. Let 𝐼(𝑥) be a
rounding function that maps 𝑥 either to ⌈𝑟 · 𝑥⌉ or ⌊𝑟 · 𝑥⌋.

Lemma 3.4.1 If the CP-formulation is integralized by 𝐼 with resolution 𝑟, then
a solution with makespan 𝑇 in the original formulation can be translated into
a solution in the integral domain with a makespan of at most 𝑟 ·𝑇 + 3 · |𝑃 | −3.

Proof. Consider a solution in the original formulation with makespan
𝑇, and let 𝑡𝑝1 ≤ 𝑡𝑝2 ≤ · · · ≤ 𝑡𝑝 |𝑃 |−1 be sorted. We show that 𝐼′(𝑡𝑝𝑖 ) =
⌊𝑟 · 𝑡𝑝𝑖 ⌋ +3 · 𝑖 integralizes the time variables, such that all constraints after
integralization are still satisfied. The makespan of the corresponding
solution is by definition ⌊𝑟 · 𝑡𝑝 |𝑃 |−1⌋ + 3 · (|𝑃 | − 1), and thus at most
𝑟 · 𝑇 + 3 · |𝑃 | − 3. The only influenced constraints are in Equation 3.14
and Equation 3.15. For these, we need to show that the equations are still
satisfied after integralization.

For Equation 3.14, we need to show that

𝑡𝑝 𝑗 ≥ 𝑡𝑝𝑖 + 𝛼(𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗) ⇒ 𝐼′(𝑡𝑝 𝑗 ) ≥ 𝐼′(𝑡𝑝𝑖 ) + 𝐼
(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
(3.16)

which can be seen as follows:

𝐼′(𝑡𝑝 𝑗 ) = ⌊𝑟 · 𝑡𝑝 𝑗 ⌋ + 3𝑗

≥ ⌊𝑟 ·
(
𝑡𝑝𝑖 + 𝛼

(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
⌋ + 3𝑗

≥ ⌊𝑟 · 𝑡𝑝𝑖 ⌋ + ⌊𝑟 · 𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
⌋ + 3𝑗

≥ ⌊𝑟 · 𝑡𝑝𝑖 ⌋ + 𝐼
(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
− 1 + 3𝑗

≥ 𝐼′
(
𝑡𝑝𝑖

)
− 3𝑖 + 𝐼

(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
− 1 + 3𝑗

≥ 𝐼′
(
𝑡𝑝𝑖

)
+ 𝐼

(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
− 1 + 3 (𝑗 − 𝑖)

≥ 𝐼′
(
𝑡𝑝𝑖

)
+ 𝐼

(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
− 1 + 3

≥ 𝐼′
(
𝑡𝑝𝑖

)
+ 𝐼

(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
For Equation 3.15, we need to show that��𝑡𝑝𝑘 − 𝑡𝑝 𝑗 �� ≥𝛼 (

𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗
)

(3.17)

⇒
���𝐼′ (𝑡𝑝𝑘 ) − 𝐼′ (𝑡𝑝 𝑗 )��� ≥ 𝐼 (𝛼 (

𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗
) )

Note that for 𝑘 > 𝑗 and therefore 𝑡𝑝𝑘 ≥ 𝑡𝑝 𝑗 and 𝐼′
(
𝑡𝑝𝑘

)
≥ 𝐼′

(
𝑡𝑝 𝑗

)
, we can

rearrange the inequalities to Equation 3.16 (by exchanging the rotation
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cost). Thus, we only need to prove the case that 𝑗 < 𝑘.���𝐼′ (𝑡𝑝𝑘 ) − 𝐼′ (𝑡𝑝 𝑗 )��� = 𝐼′
(
𝑡𝑝𝑘

)
− 𝐼′

(
𝑡𝑝 𝑗

)
=
(
⌊𝑟 · 𝑡𝑝𝑘 ⌋ + 3𝑘

)
−
(
⌊𝑟 · 𝑡𝑝 𝑗 ⌋ + 3𝑗

)
=

(
⌊𝑟 · 𝑡𝑝𝑘 ⌋ − ⌊𝑟 · 𝑡𝑝 𝑗 ⌋

)
+ 3 (𝑘 − 𝑗)

≥
(
𝑟 ·

(
𝑡𝑝𝑘 − 𝑡𝑝 𝑗

)
− 2

)
+ 3 (𝑘 − 𝑗)

≥
(
𝑟 ·

(
𝑡𝑝𝑘 − 𝑡𝑝 𝑗

)
− 2

)
+ 3

≥ 𝑟 ·
(
𝑡𝑝𝑘 − 𝑡𝑝 𝑗

)
+ 1 ≥ 𝑟 · 𝛼

(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
+ 1

≥ 𝐼
(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
− 1 + 1 ≥ 𝐼

(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )

Lemma 3.4.2 A solution with makespan𝑇𝑟 in the CP-formulation integralized
by 𝐼 with a resolution 𝑟 can be translated into a feasible solution of the original
formulation with makespan 𝑇𝑟

𝑟 +
|𝑃 |−1
𝑟 .

Proof. Consider a solution in the integralized formulation with makespan
𝑇𝑟 , and let 𝑡𝑝1 ≤ 𝑡𝑝2 ≤ · · · ≤ 𝑡𝑝 |𝑃 |−1 be sorted. 𝐼′−1(𝑡𝑝𝑖 ) =

𝑡𝑝𝑖+𝑖
𝑟 deintegralizes

the time variables such that all constraints in the original formulation are

satisfied, and the makespan is (by definition)
𝑡𝑝 |𝑃 |−1+(|𝑃 |−1)

𝑟 ≤ 𝑇𝑟
𝑟 +

|𝑃 |−1
𝑟 .

Again, the only critical constraints are in Equation 3.14 and Equation 3.15.

Let 𝑝𝑖 activate 𝑝 𝑗 , then the integralized solution fulfills 𝑡𝑝 𝑗 ≥ 𝑡𝑝𝑖 +
𝐼
(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) )
and 𝑖 < 𝑗.

𝐼′−1
(
𝑡𝑝 𝑗

)
≥ 1
𝑟
· 𝑡𝑝 𝑗 +

𝑗

𝑟
≥ 1
𝑟
·
(
𝑡𝑝𝑖 + 𝐼

(
𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

) ) )
+ 𝑗

𝑟

≥ 1
𝑟
·
(
𝑡𝑝𝑖 + 𝑟 · 𝛼

(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
− 1

)
+ 𝑗

𝑟

≥ 1
𝑟
· 𝑡𝑝𝑖 + 𝛼

(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
− 1
𝑟
+ 𝑗

𝑟

≥ 𝐼′−1 (𝑡𝑝𝑖 ) − 𝑖𝑟 + 𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
− 1
𝑟
+ 𝑗

𝑟

≥ 𝐼′−1 (𝑡𝑝𝑖 ) + 𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
− 1
𝑟
+ 𝑗 − 𝑖

𝑟

≥ 𝐼′−1 (𝑡𝑝𝑖 ) + 𝛼
(
𝑝𝑖𝑠𝑝𝑖 , 𝑝𝑖𝑝 𝑗

)
Thus, the constraints in Equation 3.14 are fulfilled after deintegralization.

If 𝑝𝑖 and 𝑝 𝑗 are activated by 𝑝𝑘 , we have
��𝑡𝑝 𝑗 − 𝑡𝑝𝑖 �� ≥ 𝐼 (𝛼 (

𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗
) )

.
In the case that 𝑡𝑝 𝑗 ≥ 𝑡𝑝𝑖 , we can rearrange the equation to 𝑡𝑝 𝑗 ≥ 𝑡𝑝𝑖 +
𝐼
(
𝛼
(
𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗

) )
, which equals the previous case but with a different

angle. We therefore only need to consider the case that 𝑡𝑝 𝑗 < 𝑡𝑝𝑖 and,
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Figure 3.9.: The relative error of solutions
computed on low resolution (𝑟 = 100) for
different rounding functions (rounding
to closest, rounding up, rounding down).

hence, 𝑖 > 𝑗.���𝐼′−1
(
𝑡𝑝 𝑗

)
− 𝐼′−1 (𝑡𝑝𝑖 ) ��� ≥ 𝐼′−1 (𝑡𝑝𝑖 ) − 𝐼′−1

(
𝑡𝑝 𝑗

)
≥

(
𝑡𝑝𝑖

𝑟
+ 𝑖
𝑟

)
−
(
𝑡𝑝 𝑗

𝑟
+ 𝑗

𝑟

)
≥
𝑡𝑝𝑖 − 𝑡𝑝 𝑗

𝑟
+ 𝑖 − 𝑗

𝑟

≥
𝐼
(
𝛼
(
𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗

) )
𝑟

+ 𝑖 − 𝑗
𝑟

≥
⌊𝑟 · 𝛼

(
𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗

)
⌋

𝑟
+ 𝑖 − 𝑗

𝑟

≥
𝑟 · 𝛼

(
𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗

)
− 1

𝑟
+ 𝑖 − 𝑗

𝑟

≥ 𝛼
(
𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗

)
− 1
𝑟
+ 𝑖 − 𝑗

𝑟

≥ 𝛼
(
𝑝𝑘𝑝𝑖 , 𝑝𝑘𝑝 𝑗

)

Together, these two lemmas allow us to bound the maximal error.

Theorem 3.4.3 The constraint program after integralization by 𝐼, with
resolution 𝑟, returns a solution with a maximal absolute error of 4·|𝑃 |−4

𝑟 .

Proof. Let the optimal solution have a makespan of 𝑇 and the optimal
solution in the integralized formulation a makespan of𝑇𝑟 . By Lemma 3.4.2,
this yields a solution with a makespan 𝑇′ with 𝑇′ ≤ 𝑇𝑟

𝑟 +
|𝑃 |−1
𝑟 . At the

same time, the solution found by the integralized formulation must have
an integralized makespan of 𝑇𝑟 ≤ 𝑟 ·𝑇 + 3 · |𝑃 | − 3 by Lemma 3.4.1. Thus,
𝑇′ ≤ 𝑟·𝑇+3·|𝑃 |−3

𝑟 + |𝑃 |−1
𝑟 = 𝑇 + 4·|𝑃 |−4

𝑟 .

Theorem 3.4.3 allows us to use any rounding function, including ⌊·⌋ and
⌈·⌉, but which one is the best? To evaluate this, we compare the accuracy
of the three classical rounding functions on a low resolution of 𝑟 = 100,
with solutions computed on a high resolution of 𝑟 = 1 000 000. The actual
solution values are computed from the activation order, and not just
rounding back the objective returned by CP-SAT, which would have a
higher error.

Figure 3.9 shows that rounding down (floor) has a slightly higher error
than the other functions, but despite using a very low resolution, the
solutions are usually well below 0.5 % off. The error first grows slightly
for larger instances but then seems to stall. This can be explained by the
fact that these are relative errors, and the average objectives for sparse
larger instances increase. The runtime (not plotted) of all options is nearly
identical, with rounding down being slightly faster.

However, all options have a negligible error for higher resolutions, and
rounding down has two important advantages:
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Figure 3.10.: Comparing the runtime performance of CP-SAT for different resolutions. An increased resolution influences the runtime by
at most a logarithmic factor. For larger resolutions, the runtimes are very similar.

1. The lower bound returned by CP-SAT can simply be divided by 𝑟,
and remains provably correct because all necessary rotations in it
have just been rounded down. For the other rounding options, we
have to incorporate the possible error.

2. Any upper bound remains feasible by simply multiplying it with
the resolution. Variables have to be equipped with an upper bound,
and close upper bounds improve the performance, as we see soon.
For the other rounding options, we have to add a gap to the upper
bound, see Lemma 3.4.1.

In the following, we settle with rounding down for integralization,
i.e., 𝐼(𝑥) = ⌊𝑟 · 𝑥⌋. How much influence does the resolution have on
the solution quality and runtime? Do we need a very high resolution
or does a lower resolution suffice while potentially being faster? To
answer these questions, we executed the CP for the resolutions 𝑟 =

10, 100, 1000, 10 000, . . . , 10 000 000.

Let us first consider the runtime. In Figure 3.10, we see that the resolution
has a surprisingly little influence on the runtime. While the very low
resolutions of 1000 or less have a runtime advantage, the larger resolutions
are fairly close, such that at most a logarithmic dependency could be
deduced. This observation is surprising when considering that CP-
SAT uses a SAT-solver in the background and needs to convert numeric
variables into a set of Boolean variables. CP-SAT uses lazy clause generation,
in which CP-SAT lazily adds for a variable 𝑥 with potential value 𝑣
the Boolean variables representing 𝑥 = 𝑣 and 𝑥 ≤ 𝑣 (more on this
later). However, all relevant values for the variables in our formulation
are actually a sum of rotation angles, e.g., 𝑡𝑝 = 𝛼(𝑒0 , 𝑒1) + 𝛼(𝑒1 , 𝑒2) +
𝛼(𝑒2 , 𝑒3) . . ., which in combination with proper bounding and pruning
can drastically reduce the number of necessary variables. Note that this is
also true for many other combinatorial problems, and that the likelihood
of different values being rounded to the same number decreases quickly
with a higher resolution. This implies that one should directly solve
the optimization problem using the desired or higher resolution and
not try shortcuts like dynamically increasing the resolution in multiple
iterations.

In Figure 3.11, we can see that we already obtain the optimal solutions
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Figure 3.11.: Deviation from the optimum for different resolutions and instance types. For resolutions of 𝑟 = 10 000 and above, we always
obtained the optimal solutions.
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Figure 3.12.: Instances solved to optimal-
ity using the MIP in percent for different
upper bounds. The influence seems to
be much smaller than for CP-SAT.

for reasonably low resolutions. Only for 𝑟 = 10 are there significant
deviations. While there are still some deviations for 𝑟 = 1000, all higher
resolutions only returned the optimal solutions. This also indicates
that the optimal solutions for the considered instances are reasonably
segregated from non-optimal instances. Hence, solving instances with
reasonably low resolutions is a valid option, but the runtime advantage
is low. Because we know that the potential error is linear, another option
would be to dynamically scale the resolution based on instance size.
We choose a constant resolution of 𝑟 = 1 000 000 for the remaining
experiments.

Performance-Influence of Upper Bound Tightness

Integral variables in CP-SAT have a lower and upper bound. The lower
bound for this problem (trivially) is zero. An upper bound can be
obtained by a greedy algorithm because no activation time is larger than
the makespan. A question that directly comes to mind is how much
energy should we put into obtaining good upper bounds? Is it worthwhile
to spend extra energy on a tight upper bound?

To answer these questions, we perform the following experiment: We
compute a greedy solution (see Section 3.5.2 (Greedy) on page 69) as an
initial upper bound and use it as baseline. We then solve the constraint
program with increased upper bounds, starting small with 5 and 10 %.
Afterward, we double it multiple times and do a final run with 512 times
the greedy upper bound.

The results with a time limit of 10 s can be seen in Figure 3.13. The plots
show that the tight upper bounds of 1.0, 1.05, and 1.1 times the greedy
solution have a significant advantage. Already for the doubled upper
bound, the runtime nearly doubles (note that the runtime plot is biased as
it also contains timeouts). For even larger upper bounds, the differences
get smaller, but for tight bounds already 5 % results in a visible decrease
in performance. This implies that a tight upper bound has a significant
influence on the performance of the CP, and getting it closer by a few
percent can already pay off.
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Figure 3.13.: Performance of using multiples (1.0, 1.05, 1.1, 2.0, . . .) of the upper bounds for the variable ranges in the constraint program.
We can see a strong decrease in performance with weaker upper bounds.

2: https://developers.google.com/

optimization/cp/cryptarithmetic

and https://developers.google.

com/optimization/cp/queens
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Figure 3.14.: The runtime performance
of using the AllDifferent-constraint.

For the Big-M formulation of MIPs it is known that a smaller M (based
on the upper bound) can improve the runtime. However, the influence
on the MIP seems to be much lower than for CP-SAT, as can be seen in
Figure 3.12. Of course, the MIP seems to perform much worse in general
for this problem, so the influence of the upper bound can be negligible
because it struggles in other parts.

Providing CP-SAT with the initial solution as variable hints showed a
negative effect in our first experiments. The tight upper bound suffices to
speed up the optimization process, while (non-optimal) variable hints
seem to lead CP-SAT’s search process astray.

Benefit of Using AllDifferent

The 𝑖𝑝 , 𝑝 ∈ 𝑃 variables order the agents within the tree such that parents
have a lower index than the children, enforced by the constraints in
Equation 3.13. A potential idea is to directly enforce that the vertices have
a strict order with unique indices, i.e., we have a unique list of agents
that corresponds to the activation order. This can be easily implemented
by using the AllDifferent-constraint of CP-SAT.

AllDifferent(𝑖𝑝0 , 𝑖𝑝1 , . . .)

The AllDifferent-constraint is useful for efficiently expressing many
problems and is actually used in both major examples of CP-SAT2. Thus,
it is reasonable to assume that it is highly optimized and can speed
up satisfying the constraints in Equation 3.13. To follow this lead, we
compare the runtime of the original formulation with the runtime of
the formulation with the added AllDifferent-constraint. The results in
Figure 3.14 show that AllDifferent seems to slow down CP-SAT instead
of speeding it up. The idea of speeding up the CP with the expressive
AllDifferent-constraint can, therefore, be discarded.

Min-Max-Modeling

The min max-objective is not directly available in CP-SAT and, thus, we
have to implement it manually. We have two options: using Θ(|𝑃 |) linear

https://developers.google.com/optimization/cp/cryptarithmetic
https://developers.google.com/optimization/cp/cryptarithmetic
https://developers.google.com/optimization/cp/queens
https://developers.google.com/optimization/cp/queens
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Figure 3.15.: Performance of the two
options to implement the min max-
objective in CP-SAT. Both options per-
form equally well.

constraints

min 𝑇

𝑇 ≥ 𝑡𝑝 ∀𝑝 ∈ 𝑃
𝑇 ∈ ℝ+0

or using the non-linear MaxEquality-constraint of CP-SAT

min 𝑇

𝑇 = max{𝑡𝑝 | 𝑝 ∈ 𝑃}
𝑇 ∈ ℝ+0 .

The first option require more constraints, but the second option is
unnecessarily restricting and non-linear, i.e., potentially more complex.
Because both options seem reasonable, we do a quick computational
evaluation to find out which version is faster. Figure 3.15 shows that
both options are nearly equally fast and solve the same percentage of
instances to optimality. We use the second option as it results in a shorter
formulation.

Multi-Threading

CP-SAT allows a concurrent execution on a specified number of threads.
Every thread then performs a different strategy, as specified below.

1. The first thread performs the default search: The optimization
problem is converted into a Boolean satisfiability problem and
solved with a Variable State Independent Decaying Sum (VSIDS)
algorithm. A search heuristic introduces additional literals for
branching when needed, by selecting an integer variable, a value
and a branching direction. The model also gets linearized to some
degree, and the corresponding LP gets (partially) solved with the
(dual) Simplex-algorithm to support the satisfiability model. More
details are given in Section 3.4.3 (How Does CP-SAT Work?) on
page 65.

2. The second thread uses a fixed search if a decision strategy has
been specified. Otherwise, it tries to follow the LP-branching on
the linearized model.

3. The third thread uses Pseudo-Cost branching. This is a technique
from mixed integer programming, where we branch on the variable
that had the highest influence on the objective in prior branches.
Of course, this only provides useful values after we have already
performed some branches on the variable.

4. The fourth thread is like the first thread but without linear relax-
ation.

5. The fifth thread does the opposite and uses the default search but
with maximal linear relaxation, i.e., also constraints that are more
expensive to linearize are linearized. This can be computationally
expensive but provides good lower bounds for some models. For
our problem, the conditional constraints in Equations 3.13 to 3.15
will only be linearized here using big-M, but not in the default
search.
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Figure 3.16.: Performance of different levels of parallelization for CP-SAT on (B)AFT. The best performance is achieved with 4 threads.
This is also true for the more complicated bidirectional version and is independent of the CPU. The runtime is compared only on
instances with 30 to 100 agents, and only if it was solved successfully on all CPUs as the comparison would get skewed otherwise.

6. The sixth thread performs a core based search from the SAT-
community. This approach extracts unsatisfiable cores of the for-
mula and is good for finding lower bounds.

7. All further threads perform a Large Neighborhood Search (LNS) for
obtaining good solutions. More precisely, a Relaxation Induced
Neighborhood Search (RINS) as proposed by Danna et al. [71] is used.
This technique iteratively fixes variables in the LP-relaxation and
tries to solve the (simpler) remaining problem.

There is a limited communication between the threads, such that new
variable bounds are propagated but, otherwise, the threads run indepen-
dently.

Gurobi, in comparison, does more actual work sharing among the
cores as, e.g., node exploration in the branch and bound tree can easily
be distributed among the cores. However, this is not possible for the
particular expensive root node, and a surprisingly large amount of time
has to be spent in the root node to make the branching actually effective.
Gurobi simply solves the root node with different parameters on every
core in the hope that some parameters perform better than others, but
the results, e.g., cutting planes, are actually merged. When using the
ConcurrentMIP-parameter, Gurobi launches multiple separate processes
with different parameters for solving a MIP and, just like CP-SAT, simply
returns the fastest*. Even Gurobi utilizes a simple portfolio strategy for
LP-solving, like CP-SAT: the first thread performs dual simplex, the
fifth thread (if available) performs primal simplex, and all other threads
work on a parallel barrier log algorithm. Generally, there is a visible
speedup when using more cores, but it is sublinear†. Hence, Gurobi has
more advanced parallelization capabilities than CP-SAT, but the simple
portfolio strategy is still a very important aspect of its parallelization.

To see the influence of the parallelization, we executed CP-SAT with
1, 2, 4, 8, and 16 threads. The results in the left plot in Figure 3.16 are
surprising, because more threads are not necessarily better even if the
CPU has sufficient cores. Using only four threads, the best performance
is achieved. This is also the case for the bidirectional problem variant

* https://www.gurobi.com/documentation/9.1/refman/concurrent_optimizer.html
† https://www.gurobi.com/resource/parallelism-linear-mixed-integer-programming/

https://www.gurobi.com/documentation/9.1/refman/concurrent_optimizer.html
https://www.gurobi.com/resource/parallelism-linear-mixed-integer-programming/
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(discussed in Section 3.7 (Adaptions for BAFT) on page 75) as can be seen
in the plot in the middle. It does also not seem to be processor specific, as
we have the same behavior on an Intel i7 6700K with four cores. We can
also see that the old Intel CPU is only 27 % slower than the new Ryzen
CPU with eight cores.

Why are four threads faster than eight or sixteen threads? The first reason
is likely to be that the performance of the first thread drops when there
are many other threads competing for cache and memory. Also, the
CPU-frequency drops faster due to the heat production of the other cores.
If the other cores actually perform useful work, this is usually still a
good trade-off. However, the second reason, which is relevant to our
problem, deals with the fact that the fifth, sixth, and all further threads
do not seem to contribute to solving the problem. Except of the sixth
thread, they heavily rely on the linear relaxation, which is extremely
weak for our formulation (as we know from the weak performance of
the MIP-formulation).

Based on these observations, we use only four threads for further experi-
ments.

3.4.3. How Does CP-SAT Work?

MIP-solvers like Gurobi or CPLEX have great documentations, and
there are many books available that explain the underlying techniques
(primarily Branch and Cut). However, there are unfortunately no such
references for CP-SAT at the time of writing. As it is therefore impossible
to refer to any useful resources to understand what is going on under the
hood of CP-SAT (except of directly referring to the open source, but very
advanced code), a short description is given here. Most implementation
details of CP-SAT mentioned in this section are taken from a recorded
talk by the developers [72], and the developers’ comments in the official
repository. It is quite possible that some of this information is already
outdated or even wrong, but it should suffice to provide at least a basic
understanding.

CP-SAT uses a SAT-solver to optimize its constraint programs, i.e., it
converts them into Boolean satisfiability formulas. This is not as simple
and direct as the LP-relaxation utilized by MIP-solvers that ‘only’ needs
to be integralized using a Branch and Cut-algorithm. By the famous
Cook-Levin theorem [73], we know that we can express any problem
in NP as a Boolean satisfiability problem that itself can be solved by a
SAT-solver. While for NP-hard optimization problems usually only the
decision version regarding a bound is in NP, a binary search can also
be used for optimization with satisfying formulas representing feasible
solutions (upper bounds) and unsatisfiable formulas providing lower
bounds. Of course, the technique of Cook [73] is much too generic and
would overstrain even the most powerful SAT-solver available, but direct
encodings are much more efficient.

An integral variable can be encoded by a logarithmic number of Boolean
variables for each of its bits (assuming that we have fixed encoding sizes).
The resulting encoding unfortunately allows only weak propagations.
Instead, CP-SAT creates for every integral variable 𝑥 and possible assign-
ment 𝑣 the Boolean variables [[𝑥 = 𝑣]] and [[𝑥 ≤ 𝑣]]. The states 𝑥 < 𝑣 can
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be expressed by [[𝑥 ≤ 𝑣 − 1]] and 𝑥 ≥ 𝑣 by ¬[[𝑥 ≤ 𝑣 − 1]]. This requires
a potentially linear (on the domain!) amount of Boolean variables, but
the propagation for the constraints is stronger. If we have the integral
variables 𝑥 and 𝑦 and the constraints 𝑥 + 𝑦 = 3, 𝑥 ≥ 0, 𝑦 ≥ 0, we can
create the Boolean clauses (¬[[𝑥 = 3]] ∨ [[𝑦 = 0]]), (¬[[𝑥 = 2]] ∨ [[𝑦 =

1]]), . . . , (¬[[𝑦 = 3]] ∨ [[𝑥 = 0]]), (¬[[𝑦 = 2]] ∨ [[𝑥 = 1]]), . . . , (¬[[𝑥 ≤
3]] ∨ [[𝑦 = 0]]), (¬[[𝑥 ≤ 2]] ∨ ¬[[𝑦 ≤ 0]]), . . .. Additionally, the Boolean
variables need to be made consistent, i.e., [[𝑥 = 0]] → ¬[[𝑥 = 1]], . . . and
[[𝑥 ≤ 2]] → [[𝑥 ≤ 3]], . . .. These are already quite a lot of clauses and
variables for a very simple model, and it is unlikely that we could solve
any larger model with this approach. However, most of the clauses are
not actually needed, and could be added via lazy generation only when
necessary.

Also, MIP-formulations can be exponentially large but still efficiently
solvable by expanding only if necessary using callbacks. For example,
the Dantzig-formulation of the TSP [58] has a theoretically exponential
number of subtour-elimination constraints. Efficient implementations
only add those constraints that are necessary whenever they stumble
over a solution that is feasible in the current MIP-representation, but not
in the fully expanded one. Of course, we need to create a separate, more
powerful, problem model on which we can verify the solutions, and if
there are violations, we need to efficiently find additional constraints
to feed to the MIP-solver. Something similar happens in CP-SAT by
only adding clauses and variables when needed. If the SAT-formulation
is infeasible, so is the underlying model, which allows us to detect
strong nogoods. If the SAT-formulation is feasible but the complete
representation is not, it is correspondingly extended. The technique is
known as Lazy Clause Generation, and is described by Ohrimenko et
al. [74]. To improve the performance, the SAT-formulation can be reduced
again; this is also done for larger MIPs, as smaller representations are
faster to solve and prior extensions can become superfluous due to later
extensions.

Solving Satisfiability Problems:

We now have converted our problem to a satisfiability formula, but
how can we solve it efficiently? The basic technique used in modern
SAT-solvers is actually surprisingly simple to understand, if one skips
over the details not immediately relevant to basic function (e.g., efficient
implementation, parameter tuning, supporting heuristics, etc.). We focus
on the VSIDS-algorithm, which is the base for the SAT-solver in CP-SAT
and the two predecessor algorithms, DPLL and CDCL. Many more
details on these algorithms can be found in the books by Knuth [75] or
Biere et al. [76] that focus exclusively on satisfiability (solvers). There is
still a lot of development in SAT-solvers, but the SAT Competition (http:
//www.satcompetition.org/) gives a clue on what the best algorithm
currently is.

The most naïve approach is to simply try out all 2𝑛 assignments for a
formula with 𝑛 variables. We can improve this by assigning the variables
one after the other and reverting our decision whenever we detect an
infeasible clause, i.e., we assign the variables in a way that leaves all its

http://www.satcompetition.org/
http://www.satcompetition.org/
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literals unsatisfied. This is generally known as backtracking, and it is the
most fundamental idea for most algorithms.

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is such a back-
tracking algorithm. It iteratively assigns a value to an unassigned variable
and backtracks if it detects an infeasibility. Additionally, in each step, it
uses unit propagation and pure literal elimination to speed up the process.
For unit propagation, we check for each unsatisfied clause if there is only
one literal remaining that could fulfill the clause and directly assign the
corresponding variable. A simple example is the clause (𝑥0 ∨ 𝑥1)with 𝑥0
already assigned to false, which only allows to assign 𝑥1 to true. For
pure literal elimination, we check if an unassigned variable only appears
in one form (negated or non-negated) in the still unsatisfied clauses, and
we assign it correspondingly as it can do no harm.

The conflict-driven clause learning (CDCL) algorithm from the 1990s extends
this idea by trying to add a clause that describes the core of the conflict
whenever we need to backtrack. Additionally, we also backtrack directly
to the root of the conflict instead of only one variable back. Adding
such a conflict clause to the formulation does not change it; it is actually
redundant, but it prevents us from performing the same mistake again
with only slightly changed variables during further branching. If the
clause in which we detected the conflict only consists of variables that
have been directly assigned by branching, no useful conflict clause can be
deduced. However, if some variables have been assigned by propagation
(e.g., unit propagation or pure literal elimination), we can trace back which
assignments lead to this and directly prohibit it by a clause. Consider the
formula (𝑥0 ∨ 𝑥1) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥0 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3). Let us assign
𝑥0 = false, which results in 𝑥1 = true by unit propagation. If we now
assign 𝑥2 = false, we have to assign 𝑥3 = true by unit propagation, but
this creates a conflict in (𝑥1∨ 𝑥2∨ 𝑥3). The core of this conflict was setting
𝑥0 = 𝑥2 = false, and therefore we can add the clause (𝑥0 ∨ 𝑥2). This will
prevent us from creating this conflict again, or at least we can detect it
earlier, even if this happens in completely different branches.

The Variable State Independent Decaying Sum (VSIDS) algorithm builds upon
the CDCL-algorithm, but tries to branch early on conflict-prone variables.
It was first used in the solver Chaff [77] in 2001, and is now implemented
by most current CDCL-solvers including the one underlying CP-SAT.
The VSIDS-algorithm associates every variable with a score, and every
time we branch, we select the variable with the highest score. In the
beginning, the score is simply the number of occurrences in clauses.
Whenever we add a new conflict clause by the CDCL-algorithm, the
score for the involved variables increases. To increase the influence of
recent conflicts (or lower the influence of older conflicts), we periodically
divide all scores by some constant.

Adding Linear Programming:

Mixed integer programming has some advantages for combinatorial op-
timization problems over classical SAT-solvers. The linear programming
relaxations provide not only useful bounds due to duality theory, but
additionally provide powerful cuts or good guesses for variable values in
some cases. Even for the Satisfiability problem, Cook et al. [78] showed
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Figure 3.17.: Optimality gap of the best
of 𝑛 random solutions. We are only using
instances we could solve to optimality
such that the plot can be skewed for
larger instances. The random instances
are not as bad as one might suspect.

that cutting planes allow exponentially shorter proofs than resolution
for some formulas. Constraints like two out of N can be easily expressed
as linear constraint by ∑

𝑖 𝑥𝑖 = 2, but these need many clauses in a
Satisfiability formula. CP-SAT actually linearizes the constraint program
to some degree and uses a (dual-) Simplex algorithm to (partially) solve
it. Even cutting planes, e.g., Chvátal-Gomory cuts, are potentially added
to improve the integrality. CP-SAT does not necessarily compute an
optimal solution, but only performs a limited amount of steps (which
can be helpful even if they do not lead to optimality due to duality).
The results are used to detect infeasibility (which can be much more
effective than resolution) and to obtain bounds on the objective and vari-
ables. Additionally, insights gained by the linear program can be used
for branching decisions. At the default level, only some constraints are
linearized. Constraints that are harder to linearize (including conditional
constraints that require big-M) are only used at a higher linear relaxation
level.

3.5. Heuristics

In the following section, we describe two heuristic approaches to compute
non-optimal solutions. We already know an approximation algorithm
which is guaranteed to yield solutions that are at most nine times worse
than the optimum. While a factor of nine sounds already far from optimal,
this is not the real issue, as this is usually just a generous upper bound
and the actual solutions are often much better. However, the problem
of this, and many other, approximation algorithms is that it is focused
on the worst case instead of the average case. Simple local heuristics
that focus on the average cases are, thus, also of high interest. We first
consider a trivial random approach as a baseline, and then engineer a
greedy algorithm.

3.5.1. Random

The most trivial approach to solve Angular Freeze-Tag is to iteratively
choose a random feasible activation. This is easily possible for this
problem as we cannot run into infeasibility. We simply start by choosing
a random neighbor 𝑝𝑖 of the start point 𝑝0 to be activated. In the second
step, we choose an arbitrary edge incident to the activated agents and
perform the corresponding activation. This is repeated until all points
are activated. To improve this most simple algorithm, we can run it 𝑛
times and then choose the best solution.

Of course, one cannot expect great results from this algorithm, but it is
generally interesting how much worse such an approach is. The better
it performs, the simpler we can expect the corresponding instance to
be. The random approach only has a reasonably good chance to yield a
good solution, if the underlying structure of the instance is easy and bad
decisions have a low influence.

When comparing the solutions of this random approach to optimal
solutions computed using the constraint programming approach, we
notice that the solutions are surprisingly good for a sufficient amount of
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repetitions. The plot in Figure 3.17 shows that the best of 1000 random
solutions has an average optimality gap of only 200 %, i.e., the makespan
is three times longer than the optimal solution. There are surely even
better methods, but this is still closer than the quality guarantee of the
approximation algorithm. As we are comparing against optimal solutions,
and we were not able to compute optimal solutions for all instances, this
plot is potentially skewed toward the larger instances: it is possible that
the optimality gap continues to increase, but the fact that we are only able
to solve the simple instances with more agents dampens this effect.

3.5.2. Greedy

A greedy algorithm iteratively builds a solution out of partial solutions
by choosing in each step the (locally) best extension to obtain a larger
solution, until we obtain a complete solution. For our problem, this
extension can be the next activation, but also the next 𝑘 activations.
When considering the next 𝑘 activations, we also have the option to only
perform the first activation. This potentially takes a longer runtime, but
every activation is looking 𝑘−1 activations into the future. When directly
using all 𝑘 activations, we only look on average less than 𝑘/2 activations
into the future. The 𝑘 generally has to be rather small, as it increases the
solutions to consider exponentially and degenerates for 𝑘 = |𝑃 | − 1 to a
brute-force algorithm.

We have multiple options to select the best, next larger (partial) solution:

Makespan: The most straight forward objective is simply using the
makespan of the partial solution. However, this potentially suffers
from bad gradients, as only the last activation has any influence.
Additionally, we should also try to reduce the other activation
times in order to make future activations faster.

Sum: Alternatively, one can simply take the sum of activation times of
all activated points in the partial solution. This will minimize the
average activation time, which does not necessarily coincide with
the minimal makespan but gives a better gradient as all activation
times get minimized.

Squared Sum: Like the sum-objective but with squared activation times.
This way, the longer activation times have a higher weight, and the
focus is more on reducing the makespan than the average activation
time.

Lexicographic: Order the activation times (decreasing) of already ac-
tivated points and perform a simple lexicographic comparison
to find the better solution. This approach can potentially suffer
from numerical issues because a minimal deviation in one of the
higher activation times can completely change the order. These
small deviations can already appear by summing the float values
in a different order.

When looking multiple steps ahead, the number of the solutions to
consider can become rather large. We can utilize the fact that these
objectives are monotonic increasing when solutions are extended. If we
have a partial solution extended by 𝑘 steps and one with worse objective
that looks fewer steps ahead, we already know that it cannot compete
with the previous solution, and we do not need to extend it further. In
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other words, we can cut off solution branches that cannot yield better
solution extensions; this drastically decreases runtime. We simply save
the best largest solution and discard any solution with a higher cost
but not more activations. The size of a solution is only measured in the
number of activated agents, but does not care about which agents are
activated. This bounding solution is updated whenever a better one of
the same size is found, or when we have a larger solution (which usually
is an extension of the previous best and bounding solution).

We are now left with the question of which option yields the best solutions
in which time. How much can we look ahead without increasing the
runtime greatly, and how much does this actually help us? What are the
differences of the four objectives?

If we only look ahead one step (i.e., activation) at a time, all objectives
yield the same results with nearly the same runtime, and there is no
decision to be made. Because every (greedy) activation is either free or
increases the makespan, all four objectives choose the minimal extension
of the makespan and, thus, perform the same steps.

Theorem 3.5.1 For the greedy algorithm with 𝑘 = 1, all four objectives
return the same solution.

Proof. With every activation added by the greedy algorithm, the makespan
increases. All four objectives try to keep this increase minimal and there-
fore return the same result. Let us assume that the makespan does not
increase and the activation requires a rotation. If it does not require a
rotation, none of the objectives would increase and it would be minimal
for all of them. If it requires a rotation, only points with an activation
time lower than the makespan can be the activator, as it would otherwise
increase the makespan. However, if this activation does not increase the
makespan, it would have been available and at a lower cost for all four
objectives before, contradicting the greedy selection strategy.

For a look-ahead depth of 𝑘 ≥ 2, there can be differences, but which
objective returns the best results and which allows better pruning? To
answer this question we compare the performance and runtime of the
different objectives at different look-ahead depths in Figure 3.18. We keep
things simple and limit ourselves to single-step moves that are potentially
slower but better for now.

The runtime is strongly influenced by the depth and the objective with
the sum-objective performing by far the worst. This indicates that it
cannot prune as well and as early as the other objectives. A shorter partial
solution tends to have a smaller sum even if it is generally worse. It has
a higher average activation time, and needs additional arguing that it
cannot be better than the longer solution or has to be branched. However,
also the squared sum-objective sums the values up. Why can it still
prune more than the mere sum? The reason for this can be that squaring
the values increases the penalty of bad decisions. If a bad rotation is
performed in an early branch, it has a stronger influence when squaring
the value instead of just summing up, and thus hits the upper bound
earlier.
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Figure 3.18.: Comparison of the runtime and performance for the greedy algorithm with different objectives and look-ahead depths. The
performance (measured in the optimality gap) is only displayed for a look-ahead depth of 4. Depth and objective have both a strong
influence on the runtime. The solution quality of all objectives is comparable with an average optimality gap of 5 % to 10 %.
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Figure 3.19.: Performance of single-step
vs. applying the full look-ahead for the
greedy algorithm with a depth of 5.
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Figure 3.20.: Runtime comparison of
a C++ vs. a Python-implementation
of the greedy algorithm. The C++-
implementation is up to 200 times faster,
even for larger instances with multiple
seconds runtime.

While the objective has a strong influence on the runtime, it has surpris-
ingly little influence on the solution quality. The solution quality is again
measured by comparing to the optimal solutions provided by the con-
straint program. As before, this can skew the results for larger instances
as not all instances could be solved to optimality. For the instances which
could be solved to optimality, the average optimality gap is between 5 %
to 10 %.

To consider larger instances, depths, and the influence of single-steps, we
focus on the fastest objective of the previous experiment, the lexicographic
comparison.

We now want to validate our previous decision to choose single-steps.
In Figure 3.19, we see that performing only the first activation toward
the best found expanded solution yields indeed slightly better results.
While the optimality gap is visibly reduced, the overall improvement
is relatively small because both options produce good solutions. As
the runtime increases only linearly with the look-ahead depth, it is
recommendable to perform single steps at least for smaller look-ahead
depths.

One important remaining question is the influence of the look-ahead
depth on the solution quality, which we try to answer with the plots in
Figure 3.21. First, we can see that also the runtime with the lexicographic-
objective increases strongly with a higher look-ahead depth, and that
instances with 300 or more agents can already take many minutes for a
depth of 3. A depth of more than 6 will quickly become prohibitively
expensive, at least for larger instances, such that there is no advantage to
the relatively efficient constraint program. The solution quality continues
to increase with higher look-ahead depth. However, even at depth 6, it
does not reach the quality of the solutions of the constraint program with
a comparable runtime. Still, the greedy algorithm performs reasonably
well even for low depths. It is important to note that the optimality gap is
this time measured on lower bounds, and not on optimal solutions which
are not available for such large instances. The reason why the optimality
gap increases can simply be due to a worse lower bound and not a worse
solution of the greedy algorithm, but this allows us to see that even for
large instances, the optimality gap is at most around 20 %.
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Figure 3.21.: Runtime and solution qual-
ity for the greedy algorithm with lexico-
graphic objective and single-steps. The
runtime is strongly increased by higher
look-ahead depths, but also the solution
quality improves visibly. The optimal-
ity gap is computed based on the lower
bound returned by CP-SAT and not on
optimal solutions to extend the range of
instances. For larger instances, no lower
bound is available.
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We implemented the greedy algorithm, contrary to the other algorithms,
in C++. The importance of an efficient programming language becomes
apparent when comparing the runtime of a Python-implementation with
the runtime of a C++-implementation in Figure 3.20. Especially for higher
depth, for which a lot of partial solutions have to be quickly created and
compared, the C++-implementation is around 100 to 200 times faster. This
can make the Python-implementation even slower than CP-SAT. The use
of a profiler indicates that a lot of the time is spent in branching solutions
for which a solution has to be copied to apply different activations. By
utilizing more efficient solution representations in, e.g., NumPy, we could
also speed up the Python-implementation significantly, but it is unlikely
to come close to the runtime of a C++-implementation.

3.6. Evaluation

In the previous sections, we have seen a number of individual benchmarks
for specific algorithms and approaches. In this section, we try to put
them all into comparison. We start by describing the setup and the used
instances (that have also been used for the previous smaller experiments),
then compare the two approaches with optimal solutions, and finally we
try to get good solutions for very large instances using all approaches.
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Figure 3.22.: Instance distribution.
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Figure 3.23.: The maximum difference
of the runtime of CP-SAT for solving an
instance 10 times with a time limit of
30 s. In nearly all cases, either all trials
solved the instance to optimality or none.
This indicates that the performance of
CP-SAT is reasonably deterministic and
has only a small variance.
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Figure 3.24.: The lower bounds of the
MIP and the CP. The MIP is quickly
incapable of providing any useful lower
bound while the lower bound quality of
the CP only declines slowly.

3.6.1. Benchmark: Instances, Software, and Hardware

We re-used the same instances as for Minimum Scan Cover, see Section 2.6,
but increased the range of vertices and edges. Additionally, we added a
uniformly random initial heading to each agent. The distribution of the
increased instance set can be seen in Figure 3.22.

The instances have been solved on desktop workstations equipped with
AMD Ryzen 7 5800X (8 × 3.8 GHz) and 128 GB of RAM. The mixed
integer programs were solved with Gurobi 9.1.2 and the constraint
programs were solved with Google’s CP-SAT in ortools 9.0.9048. Except
for the greedy algorithm, the code has been implemented in Python 3.8.8.
The greedy algorithm has been implemented in C++20 with a Python-
interface because the pure Python-implementation was not satisfactorily
efficient. The time limits differ for various experiments, and the modeling
time of the mixed integer program and the constraint program are not
considered. The reason for this is that the modeling process is not as
optimized as it could be. However, we still abort the modeling process if
it takes too long. For smaller time limits, CP-SAT can also be inaccurate
and actually abort earlier, e.g., after 8 s instead 10 s.

3.6.2. Optimal Solutions

During the tuning process of the mixed integer program and the constraint
program, we already saw that the constraint program is much more
efficient than the mixed integer program. We now want to analyze
which instances can actually still be solved to provable optimality. The
instances were solved with a time limit of 30 s, and there was only one
trial per instance because Figure 3.23 shows that the runtime of CP-SAT
is reasonably deterministic.

First, we can see in Figure 3.25 that the mixed integer program cannot
even solve instances with 20 agents. It cannot even prove any usable
lower bounds for instance with more than 25 agents, as can be seen in
Figure 3.24.

The constraint program, on the other hand, even solves instances with 120
agents to optimality by a chance of 50 %. The celestial instances seem to
be harder to solve while for the general instances, even around 50 % of the
instances with 150 agents have been solved to optimality. Compared to the
other optimization problems in this thesis, the decline of solved instances
is surprisingly slow but early. We encounter a lot of hard instances early,
which slowly increase until we are only able to solve around 60 % of the
instances before we have a heavy drop. At this point, the corresponding
formulations already reached a considerably large number of variables
and constraints which simply become hard to handle within a time limit
of only 30 s. This indicates that it is probably less the size of the instances
but specific properties of them that make the instances hard. When
looking on the distribution of the solved instances, we can only see a
small tendency of sparse instances to be slightly easier, but they also
have smaller formulations. This leaves us with the observation that the
Angular Freeze-Tag Problem is surprisingly easy to solve to optimality
for many instances, but that there are also many smaller instances that
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Figure 3.25.: Instances solved to optimality within 30 s in percent and the distribution over the amount of edges and agents. The MIP
performs poorly, while CP-SAT can solve larger instances to provable optimality. The distribution shows that sparse instances have a
slightly higher chance of being solved to optimality, but that is barely notable.
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Figure 3.26.: Runtime and solution quality (objective value divided by best known objective value) for different algorithms. The greedy
algorithm uses a look-ahead depth of 3. The CP and MIP return a greedy solution with depth 1 if they are not able to compute a solution.

are very difficult, fitting to the NP-hardness of the optimization problem.

3.6.3. Good Solutions

We can compute optimal solutions for many instances, but what can we
do for the remaining instances? Our only option is to use approximative
or heuristic approaches to obtain at least reasonably good solutions. Thus
far, in Sections 3.4 and 3.5, we were introduced to multiple approaches:
an approximation, a random approach, a mixed integer program and
a constraint program (which can also return intermediate solutions
at time-out), and a greedy algorithm. The random approach can be
discarded as it has no chance of competing against the other approaches,
as we have already seen in the preliminary experiments. We compare the
solutions of the approximation algorithm, the exact algorithms with their
intermediate solution or a simple greedy solution of depth 1 at timeout,
and the greedy algorithm with a look-ahead depth of 3. As we do not have
optimal solutions or even reasonably good lower bounds for all instances,
we compare the performance in relation to the best performance: for
every instance, we use the best solution of any approach as baseline. The
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plots in Figure 3.26 show that the approximation algorithm is very fast
and also reasonably good. Most of the time, its makespans are less than
50 % longer than the best known solution (on average 38 %). As expected,
the constraint program leads the pack for smaller to medium-sized
instances. Only at around 150 agents, the greedy algorithm becomes
competitive to the constraint program. Overall, the greedy algorithm
yields good solutions at a good scalability. In combination with the
constraint program, which needs an initial solution, it can solve most
instances to optimality or at least with an average optimality gap of less
than 20 %. For very large instances, the approximation algorithm yields
reasonably good solutions in a fraction of the time.

3.7. Adaptions for Bidirectional-AFT

Until now, we have just considered one-sided adjustments, but for practice
we are more interested in two-sided adjustments (both sides must point
toward each other). We can adapt our approaches from the one-sided
variant to the two-sided variant. In the following, we describe how
to perform this adaption for the constraint program and the greedy
algorithm, including some preliminary performance evaluations.

3.7.1. Adapting the Constraint Program

The constraint program can easily be adapted to require the receiver
to adjust to the sender. Currently, only the sender will point to the
receiver, but the receiver will still head toward its starting position at
this time. However, the time dependencies for activating neighbors is
nearly identical to being activated. This allows us to adapt the previous
constraint program with only some small changes.

First, we remove the constraints in Equation 3.14, as agents will no longer
head toward their initial heading at the time of their activation.

Second, the activation time needs to allow the activated agent to rotate
from its initial heading toward the activating agent. More precisely: if
𝑝 activates 𝑝′, 𝑡𝑝′ has to be at least the time 𝑝′ needs to rotate from its
initial heading to 𝑝.

𝑥𝑝→𝑝′ ⇒ 𝑡𝑝′ ≥ 𝛼(𝑝′𝑠𝑝′ , 𝑝′𝑝) ∀𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑁(𝑝) − 𝑝0 (3.18)

Third, we have to integrate the activating agent in the rotation time de-
pendencies that are currently enforced by the constraints in Equation 3.15.
More precisely: if 𝑝 activates 𝑝′ and 𝑝′ activates 𝑝′′, then 𝑡𝑝′′ has to be at
least 𝑡𝑝′ plus the rotation time of 𝑝′ from 𝑝 to 𝑝′′.

∀𝑝 ∈ 𝑃, 𝑝′ ∈ 𝑁(𝑝) − 𝑝0 , 𝑝
′′ ∈ 𝑁(𝑝′) − 𝑝0 , 𝑝 ≠ 𝑝′′ : (3.19)

𝑥𝑝→𝑝′ ∧ 𝑥𝑝′→𝑝′′ ⇒ 𝑡𝑝′′ ≥ 𝑡𝑝′ + 𝛼(𝑝′𝑝, 𝑝′𝑝′′)

For 𝑝′ = 𝑝0, we need

𝑥𝑝0→𝑝 ⇒ 𝑡𝑝 ≥ 𝛼(𝑝0𝑠𝑝0 , 𝑝0𝑝
′) ∀𝑝 ∈ 𝑁(𝑝0) (3.20)
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Figure 3.27.: Percentage of BAFT instances solved to optimality over size (number of edges and agents). Additionally, the distribution
shows that the density of the graph does not seem to have an influence. We can only solve much smaller instances of BAFT than of AFT.
The general instances are slightly easier than the celestial ones.

because 𝑝0 does not need to be activated but can directly rotate from its
initial heading, like in the original problem variant.

These new constraints now enforce that every agent has enough time
to rotate from its initial heading before being activated, and that agents
can rotate toward their activating agent before activating any other
agents. Due to the triangle inequality, it is sufficient to make sure that
the activation times are far enough apart, and we do not need to encode
the concrete order. The only explicitly enforced part of the rotation order
is in Equation 3.19 by not using absolute values as in Equation 3.15. Note
that Equation 3.15 is still used to ensure enough rotation time between
consecutive activations.

The performance of this formulation can be seen in Figure 3.27. For 20
agents, instances already become hard, especially for celestial instances.
For general instances, we can still solve instances with less than 30 agents
with a reasonable ( 50 %) chance, but no instance with more than 70
agents could be solved to optimality anymore. The edge density does not
seem to influence the hardness. While the instances also get harder with
more edges, this seems to be primarily due to the correlation with the
number of agents.

3.7.2. Greedy Algorithm

The adaption of the greedy algorithm is trivial: it actually just optimizes
the activation edges based on the computed activation times. Therefore,
we only have to adapt the way the activation times are computed.

The performance of the greedy algorithms is comparable to our original
problem, AFT, or possibly even better as our lower bounds are not as
strong. This is shown in the plots of Figure 3.28. The objectives have
only little influence on the solution quality but a strong influence on the
runtime. The optimality gap using the lexicographic objective decreases
with the look-ahead depth notably but not strongly, as it is already good
at low depths. For a look-ahead depth of 1 to 6, the optimality gaps
are 12.82 %, 11.48 %, 10.55 %, 9.38 %, 8.55 %, and 7.62 %. The difference
decreases for larger instances.
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(c) Runtime for lexicographic.
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(d) Solution quality for lexicographic.

Figure 3.28.: Performance of the greedy algorithms for BAFT. The objectives show the same runtime differences as for AFT, with the
sum-objectives being the slowest by far, and the lexicographic objective being the fastest. The performance of the four objectives with a
look-ahead depth of three is nearly identical, with the lexicographic-objective being minimally better. By increasing the look-ahead
depth, we can improve the optimality gap at the cost of a higher runtime.

3.8. Conclusion

This chapter considered the Angular Freeze-Tag Problem (AFT) and, the
more practical variant, the Bidirectional Angular Freeze-Tag Problem
(BAFT). We focused on solving instances to optimality and did a deeper
dive into the behavior of CP-SAT. This showed not only that CP-SAT can
deal well with numerical variables, but also that increasing the resolution
results in an only slightly increased runtime, despite the need to convert
every numeric variable into many Boolean variables. Many instances
of AFT show to be benign, and CP-SAT is able to solve many instances
with over 100 agents to optimality within seconds. On the other hand,
there are also many smaller instances which show to be hard at least for
CP-SAT. Mixed integer programming performed poorly on this type of
problem, as it is not able to prove good lower bounds, probably due to
the many applications of the big-M-method. Also, the approximation
algorithm and the greedy algorithm return reasonably good solutions
with average optimality gaps below 50 % resp. 20 %. For BAFT, only a
small adaption of the CP and the greedy algorithm are necessary, but the
instances prove to be harder to solve to optimality. Only instances with
less than 25 agents have a good chance of being solved to optimality. The
greedy algorithms perform well, comparable to AFT.
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This chapter presents a distributed auction-based scheduling ap-
proach for maximizing the value of the downloaded data from a
satellite swarm. The method allows competing satellite operators to
bid for contact times and has a fair and transparent price estimation
based on the competition. On its own, it can also be used with a
simple bidding strategy to obtain good schedules; this is demon-
strated on benchmark simulations with up to 1080 satellites. As a
consequence, we are able to achieve value rates of 74 % of the available
data, compared to just 28 % for standard greedy strategies.

4.1. Introduction

The previous two chapters focused on inter-satellite communication that
is advancing but not common, yet. Currently, centralized communication
with ground stations (such as in Figure 4.1) is used for most constellations.
In this chapter, we consider a central challenge that is mission critical
for the successful operation of large-scale satellite constellations in Low-
Earth Orbit with ground stations: How can we coordinate the short-term
download operations for the enormous amounts of generated data,
based on wireless line-of-sight connections to a limited number of
stationary ground stations? These issues are critical for the future growth
of space systems, with multiple commercial space operators competing
for downloading their commercial data in a timely fashion, relying on
the services of a scarce set of ground stations that is subject to numerous
strong constraints, so it cannot simply be expanded.

Figure 4.1.: A ground station for satellite
communication (Galileo IOT L-band an-
tenna). Copyright by European Space
Agency (ESA/C. Lezy,CC BY-SA 3.0
IGO).

The trend of using distributed space systems – such as satellite constel-
lations – instead of monolithic systems has been growing for the last
decade. Some newly announced constellations feature more than 1000
satellites. Traditional spacecraft operations involve manual control of the
spacecraft by skilled human operators, following a 4-eyes principle. Even
when operators batch multiple telecommands together, this process is
still time-consuming and prone to errors. In addition, the autonomy level
aboard traditional spacecraft is low; critical activities, such as anomaly
identification and resolution, must be supervised by the operators. This
manual approach is not (linearly) scalable to large satellite constellations,
resulting in a variety of algorithmic challenges for automated operation.
According to the NASA Technology Roadmap [79]: “Demand contin-
ues for ground systems which will plan more spacecraft activities with
fewer commanding errors, provide scientists and engineers with more
functionality, process and manage larger and more complex data more
quickly, all while requiring fewer people to develop, deploy, operate
∗ The content of this chapter has been presented at CASE 2019 [4] and was spawned
by the ASIMOV project at the European Space Agency. Other papers of this project
include [15–17]. Many thanks to the project members Mohamed Khalil Ben-Larbi, Mirue
Choi, Jonas Dippel, Sándor P. Fekete, Benjamin Grzesik, Andreas Haas, Tom Haylok,
Harald Konstanski, Michael Perk, Kattia Flores Pozo, Volker Schaus, Christian Schurig,
and Enrico Stoll for their collaboration.
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and maintain them”. This gives rise to numerous problems of robotics
and automation, many of which involve extremely complex systems and
requirements.

One of the critical aspects of satellite constellation operation is being
able to promptly retrieve the generated payload data. For satellites in
low-earth orbit (LEO), this data is typically based on visual imaging,
with total size growing quadratically with increasing image resolution
and linearly with time resolution; in fact, the demand for up-to-date,
fine-grained images is one of the driving forces behind the rapidly
expanding number of satellites in current and projected constellations.
Downloading this data relies on wireless communication between the
orbiting satellites and a limited number of stationary ground stations
with powerful parabolic antennas, requiring a direct line of sight; note
that even when the underlying metadata (describing size and importance
of payload data consisting of image files) is relatively small (and thus
rapidly communicated), the download times for the actual payload
data itself are considerable. As a consequence, these communication
links become a critical bottleneck for successful, timely operation of a
satellite constellation. However, coordinating these communications for
massive satellite constellations and enormous amounts of data involves
excruciatingly difficult optimization problems.

Currently, most satellite systems have their own dedicated ground
stations. However, the demand for growing the number of satellites
(e.g., for providing high-resolution, short-term imaging data) is quite
high, whereas the building and operation of ground station (which
should be located at high geographic latitudes, i.e., close to the poles
in order to provide frequent communication windows) is subject to
numerous geographic, logistic and political constraints, as well as quite
expensive. As a consequence, it is foreseeable that ground stations will
have to be shared, enabling these systems to be more dynamic and
deal with temporary bandwidth bottlenecks while also lowering the
prerequisites of new satellite systems. Furthermore, outsourcing the
maintenance of the ground stations to a Ground Station as a Service will
allow satellite operators to focus on the satellites themselves. While
there are already sophisticated scheduling algorithms for prioritizing
important data in the presence of limited bandwidth (as described in the
section on related work), they miss the element of a bidding and pricing
scheme for competing satellite systems needed for such a service.

In this chapter, we present an auction-based approach for coordinating
and prioritizing download activities of a satellite constellation fit for
a Ground Station as a Service system. In it, satellite operators bid on
communication slots of ground stations and are billed correspondingly.
If the occupancy is high, the prices automatically rise such that important,
i.e., high-valued data is prioritized. We also demonstrate the power of
our approach on benchmark constellations with more than 1000 satellites
and a time window of 36 days: Our auction-based approach manages
to retrieve ∼74 % of the total data valuation, compared to merely ∼28 %
that are achieved by a standard greedy-type approach that is typically
used by human operators with automation assistance.
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4.2. Related Work

Scheduling is a common problem in computer science with a vast amount
of research and literature. A thorough introduction to the topic is given
by Pinedo [80]. In addition to scheduling theory in general, there has been
a considerable body of work on scheduling in the context of satellites. In
her PhD thesis, Spangelo [81] considers operational challenges specific
to small satellites in LEO, such as restricted on-board energy and data
storage capacity.

Unfortunately, finding an optimal solution for even very restricted offline
versions of the scheduling problem is known to be NP-hard. Therefore,
exact solutions do not scale to large constellation sizes. However, for
practical purposes, an algorithm that always achieves an optimal schedule
is often not needed, motivating approximations algorithms and heuristics
that are considered in the literature.

Scheduling problems that arise in practice are often inherently online in
nature, i.e., scheduling decisions must be made without complete informa-
tion. This also holds true for satellite operations: not all customer requests
are known ahead of time, so it may be desirable to change the schedule
after observing an event of interest. Furthermore, anomalies may occur
during operation. Li et al. [45] consider an online scheduling variant with
stochastic arrivals of urgent tasks and sequence-dependent setup times.
They make a distinction between normal and urgent tasks. Rescheduling
during orbit (between ground contacts) requires autonomous decision-
making with limited/local information by the satellite. This is especially
true if rescheduling is triggered because the satellite itself observed/mea-
sured an event of interest. Urgent customer request may be relayed via
inter-satellite communication links (if available) from ground station to
satellite. Stottler [82] reports a prototype implementation for a sched-
uler that incorporates case-based reasoning to automatically resolve
conflicts. This conflict resolution is based on past decision-making and
approval of human schedulers. A method for scheduling services in
large satellite constellations is described by Marinelli et al. [83], in which
types of scheduling problems are identified, and a time-indexed inte-
ger programming formulation is used. They also describe a practical
heuristic approach based on Lagrangian relaxation and a Fix-and-Relax
algorithm. The method was experimentally evaluated with promising
results on the GALILEO project in research between Telespazio and the
European Space Agency. Augenstein et al. [46] describe the scheduling
algorithm that is used for the Terra Bella constellation. They consider the
following problem setting and constraints: agile satellites that can change
orientation, non-zero setup times for ground stations between different
satellite contacts, a required minimum contact frequency for each satellite
to transmit health/telemetry data and the ability for human operators
to manually “lock-in” or “lock-out” a given contact. The objective is to
balance image collection and data downlinking time, while maximizing
the image collection of priority-weighted targets. Lee et al. [84] show a
genetic algorithm for scheduling, which is designed with regard to the
Korea Multi-Purpose Satellite (KOMPSAT) series.
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4.2.1. Decentralized Auction-Based Scheduling

As an alternative to centralized scheduling, Wellman [85] proposed
auction-based decentralized scheduling, with competing agents bidding for
resources. The schedule and the prices for the resources are determined
by auction or market mechanisms. Prices may be purely virtual, but can
also be used to determine actual usage fees. Agents work for their own
advantage and may hold information private regarding their strategy.
They have to evaluate the trade-offs of acquiring resources to maximize
their objectives potentially with a limited budget.

In our case, satellites bid for communication slots of ground stations
trying to maximize their downlinked data value while minimizing the
overall costs. Therefore, the ground stations act as auctioneers. As in
other auction-based mechanisms, the auctioneer continuously posts the
price quotes to the agents. The agents communicate their bids iteratively,
so that they can react to competing parties. After a fixed time window,
the auctioneer computes the final schedule and price.

An auction may be differentiated across many parameters such as price
determination algorithm, event timing, bid restriction, and intermediate
price revelation. One of the most important distinctions is whether an
individual auction allocates a single resource or several resources at once
(combinatorial auctions).

The term combinatorial auction was popularized by Rasseneti et al. [86] in
1982. Later work on the complexity of the problem [87] showed that it is
NP-hard to determine an allocation once all bids have been submitted to
the auctioneer. These results lead to further research on the topic [88].
Solving distributed scheduling problems with market mechanisms has
been proposed multiple times [89, 90]. Wellman [91] named his approach
market-oriented programming (MOP).

Prior work has successfully applied market-inspired mechanisms to
scheduling [92, 93] and other distributed resource allocation problems.
Several have adopted the framework of general equilibrium theory and
have found that the computational markets behave predictably when the
conditions of the theory are met [91]. Additionally, the MOP approach
was applied to a variety of discrete optimization problems. It has been
successfully adopted to scheduling problems in manufacturing [94–96]
and train or airport slot allocation [97–99]. Moreover, the benefits of the
approach have been widely used in transportation services [88, 100].

Depending on the application of the scheduling problem, one can in-
vestigate bidding strategies that produce better solutions [101]. Bidding
strategies like iBundle [102] (in which the price update is based on bid
prices from unsuccessful agents) have brought great success to train
scheduling problems [97].

4.3. Preliminaries

Given the difficult conditions (with enormous distances and large
amounts of data), ground stations and satellites use directed anten-
nas for high-bandwidth communication. This requires satellites not only
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to be in range, but also necessitates precise adjustments of both sides,
which can take up to two minutes. This also implies that satellites and
ground stations have to be informed in advance of scheduled contacts.
Because satellites in LEO are moving very fast (they can orbit earth
in 90 min), the feasible contact windows are only a few minutes long.
In addition, many satellite constellations operate in sun-synchronous
orbits. As a consequence, satellite distribution is heterogeneous, with
particularly high density near the poles, as polar orbits and ground
stations increase the frequency of contact windows.

This leads to a basic model with the following underlying assumptions;
some of them constitute slight but legitimate simplifications that are used
in the following experiments.

▶ Ground station and satellites can establish a connection if the line
of sight is not interrupted and a pass can be reliably predicted.
Hence, for every satellite and ground station there is a continuously
extended list of feasible contact windows (each having a minimal
start and a maximal end time) in which data could be transmitted
if there are no conflicts (see next point).

▶ Satellites and ground stations each need 2 minutes of adjustment
time before each scheduled contact. During adjustment and contact,
no other contacts can be performed.

▶ For simplicity, we use a homogeneous bandwidth. The amount of
downloaded data hence can be measured in contact time.

▶ The onboard storage of each satellite is limited to the amount that
could be downloaded in 10 000 seconds. If the memory is full,
the least valuable data is automatically deleted. Data is created
randomly (uniformly distributed size, value, and time).

▶ A contact can be performed if it is scheduled at least three hours in
advance.

▶ The satellite operator has a knowledge of the data value on board
of the satellites.

The last two assumptions are non-trivial but can be implemented by
an additional low-bandwidth connection which are less restrictive than
high-bandwidth connections and sufficient since the corresponding data
is much smaller than the actual payload. However, even without such an
additional connection, data value can to some degree be predicted and
supported by piggybacking information during other contacts. Some
satellites also do not need to be informed about contacts in advance
because they automatically anticipate data from ground stations in reach
and adjust correspondingly to some ground station.

To evaluate the scheduling quality, we consider in our experiments the
objective of data and value rate as well as minimizing contact pauses.
The data rate is the percentage downloaded of all generated data. The
value rate is analogous but considers the value of the data.

4.4. Concept

In our algorithm (see Figure 4.2), each satellite acts as a bidder who wants
to buy contact times on ground stations to maximize the value of its
downlinked data minus the price paid for the contacts. Ground stations
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Figure 4.2.: Based on data value esti-
mations, and pass predictions, bids on
contact intervals for each satellite are
computed and sent to the correspond-
ing ground stations. The ground stations
constantly collect these bids and deter-
mine the highest bids and their current
prices. Based on this information, the
satellites can update their unsuccessful
bids.
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act as auctioneers that accept bids on usage intervals and continuously
determine the currently highest bids and their prices. A bid wins the
auction when it remains the highest bid until a specified time before
the beginning of its interval, such that there is enough time to actually
schedule the contact. The currently highest bids are broadcast frequently,
so satellites can move their bids into intervals with lower prices. All
bids that are not marked as highest bid can be retracted or updated. The
prices have to be fair and based on the actual demand (i.e., competition)
such that they can be used as an actual fee in a Ground Station as a
Service system. Note that neither the satellite nor the ground station
will actually do any computations; these are carried out by separate
computers, as the satellites do not have the required computational and
communication capabilities. Hence, the data value estimation for the
satellites that is important to determine the bid amount is only based on
meta-information and predictions.

There are two primary components:

1. An auctioneer’s algorithm that determines the highest bids and
their prices. It needs to be fast for continuous evaluation and
transparent to prove its fairness.

2. A bidding strategy for satellites that can be different for each
satellite.

While centralized scheduling algorithms like the one of Lee et al. [84] can
be used to obtain a comparable (possibly even better) schedule, they miss
a pricing scheme and do not allow different dynamic bidding strategies
for competing satellite operators. Our approach provides not only a good
scheduling quality, but also a fair pricing scheme and individual control
for each satellite operator.

4.5. Auctioneer’s Algorithm

The auctioneer has to continuously select the winning bids for time slots
as well as the corresponding prices.
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Figure 4.3.: Example of the auctioneer’s
algorithm. Every block is a bid for a time
interval. It contains the current price and
in brackets the limit. Red bids are the
current bid selection. Dashed bids have
reached their limit.

4.5.1. Optimal Bid Selection

If a ground station is given a set of offers for intervals, it is not obvious
how to select the highest bidders. While for independent resources one
could simply always take the highest offer, this is not the case if the
resources are overlapping as it is the case for time intervals: Multiple
short intervals with low offers can together outweigh a high offer for a
long interval. While one could still accept the interval with the highest
offer or the highest relative offer (price/length), either strategy would
encourage to either buy very long intervals or to drive out the competition
by very short intervals. The most reasonable approach is to select the
intervals as winning bids that in combination are willing to pay the most.
The optimal selection of winning bids can be computed efficiently, which
allows us to repeat this procedure at a high frequency.

Theorem 4.5.1 Given a set of 𝑛 intervals and corresponding prices. We can
compute the optimal selection of intervals such that no two selected intervals
are intersecting and the sum of prices is maximal in𝑂(𝑛 log 𝑛) time or𝑂(𝑛)
if the intervals are already sorted by their end.

Proof. This problem is also known as the Weighted Interval Scheduling
Problem. It can be solved in 𝑂(𝑛 log 𝑛) resp. 𝑂(𝑛) via a simple dynamic
program [103, Chapter 6.1].

Let WIS(𝐵, 𝑝) denote the optimal Weighted Interval Schedule for intervals
𝐵 and prices/weights 𝑝. If there are multiple such solutions, return the
one with the most intervals (can be easily integrated into the dynamic
program).

4.5.2. Price Estimation

A natural approach to pricing a winning bid is the Vickrey principle, with
the winning bid paying the price of the second-highest bid. Applying
this to our case with overlapping intervals requires some care, as there
is no such thing as a clear “second-highest bid”; e.g., the competition
may be based on a long interval that has been outbid by multiple smaller
intervals. To get a fair pricing, we set every price initially to some small
value (such as zero or one) and increase the price only if the interval is
not among the winners and their offer is not yet reached. This process
ends when none of the prices of the losing bids can be increased anymore
because they reached their current (maximum) offer. If the price of a
winning bid is not limited by its offer, it would also have the same price
even if its offer had been higher. This achieves the Vickrey principle,
with the price mainly determined by the competition and not by the own
offer. The algorithm is described in Algorithm 1, an example is given in
Figure 4.3.

There are multiple options to increase the price, e.g., adding a constant
value, a percentage of the current price, or a percentage of the maximum
offer. Each of these solutions results in different runtimes.
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Algorithm 1: Auctioneer’s Algorithm.
Data: A set 𝐵 of bids with begin, end, and offer.

A map price : 𝐵→ ℝ+0 with (initial) prices.
A price increase function inc : ℝ+0 → ℝ+0

Result: A subset𝑊 ⊆ 𝐵 of winning bids
and a map of prices price : 𝑊 → ℝ+0

1 𝑊 = WIS(𝐵, price);
2 while ∃𝑏 ∈ 𝐵 \𝑊 : price[𝑏] < 𝑏.offer do

3 for 𝑏 ∈ 𝐵 \𝑊 do

4 price[𝑏] = min(inc(price[𝑏]), 𝑏.offer);
5 𝑊 = WIS(𝐵, price);
6 return𝑊, price;

Theorem 4.5.2 Algorithm 1 with 𝑛 bids and the highest offer being ℎ

terminates after at most

▶ 𝑂(𝑛2 ∗ ℎ) steps for constant increments, e.g. +1.
▶ 𝑂(𝑛2 ∗ log ℎ) steps for proportional increments, e.g. +20% (initial

price has to be positive).
▶ 𝑂(𝑛2) steps for e.g., +0.05 ∗ ℎ.

Proof. In every step, at least one price is increased, and every bid can
only be increased 𝑂(ℎ)/𝑂(log ℎ)/𝑂(1) times. Sorting the bids for the
end takes 𝑂(𝑛 log 𝑛) and reevaluating𝑊 takes 𝑂(𝑛).

Lemma 4.5.3 For a set of bids 𝐵, Algorithm 1 returns the same winning bids
as WIS(𝐵, 𝑏 → 𝑏.offer) if the solution is unique.

Proof. Further increments of the prices in Algorithm 1 do not change the
winning bids, because all losing bids cannot increase their offer to become
more attractive. The solution is thus identical to WIS(𝐵, 𝑏 → 𝑏.offer).

In practice one can achieve a significant improvement by estimating the
winning and losing bids first (because they do not have to pay anyway).
Then we directly set the losing bids to their maximum price and prevent
many alternating increments.

Theorem 4.5.4 If we set the price of the losing bids directly to their maximum
and assuming the bids are sorted in advance, Algorithm 1 with 𝑛 bids and the
highest offer being ℎ terminates after at most

▶ 𝑂(𝑛 ∗ ℎ) steps for constant increments, e.g. +1.
▶ 𝑂(𝑛 ∗ log ℎ) steps for proportional increments, e.g. +20% (initial price

has to be positive).
▶ 𝑂(𝑛) steps for e.g., +0.05 ∗ ℎ,

Proof. Let 𝑊 ′ be the winning bids, determined by WIS(𝐵, 𝑏 → 𝑏.offer).
In every step,𝑊 ∩𝑊 ′ never decreases. Let 𝑤′ be the last bid to be added
to𝑊 ∩𝑊 ′. It is incremented in every round, because it is losing in every
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round except the last one. This is only possible 𝑂(𝑛)/𝑂(log 𝑛)/𝑂(1)
times.

By using a binary search to find the increment on which the solution
changes can improve the runtime further. However, in both cases the
prices can drastically differ to the original version.

4.6. Bidding Strategy

Every satellite can have its own strategy that best fits its purpose. A simple
strategy can be to consider all feasible intervals on all ground stations and
estimate their gain by using the value of the currently available (and not
already scheduled) data and the prices of the intersecting highest bids.
Then one bids on the interval with the highest expected gain and marks
this interval and the corresponding data as scheduled (if this bid loses,
this is undone). The maximum offer should not be the estimated value
but only some percentage above the currently estimated price because
at some price, another interval has a higher gain. This is repeated until
there are no more intervals with positive gain on any ground station. The
relative value of later bids decreases as the “good data” is already used
for the previous bids. In order to discretize the set of intervals, we only
consider those that begin at event points, such as the beginning of other
highest bids, as well as periodical event points (e.g., every 5 minutes).

Future Work 4.1.

Can we refine this basic approach by one of the following methods?

▶ Use a prediction for future data value gain until the beginning
of the considered interval.

▶ Consider the success probabilities of the previous bids for your
value estimations and possibly even bid for conflicting intervals.

▶ Use the “second-best opportunity” to estimate the maximum
one would pay for an interval before switching to the second
best. As intervals have different lengths, this is not trivial.

▶ Considering that intervals farther in the future may be subject
to higher price increases.

▶ Multiple lower bids can outbid a higher bid. However, these
bids are usually from different (not cooperating) satellites, so it
is reasonable to occasionally try bids that do not seem to have a
chance.

4.7. Experimental Evaluation of Schedule

Quality

To validate the schedule quality of our method, we have evaluated four
different satellite constellations, as shown in Table 4.1. They contain the
Galileo constellation, a slightly enlarged constellation version of the Dove
constellation of Planet, and one modeled after the planned OneWeb
constellation. The Galileo constellation is in medium earth orbit and
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Table 4.1.: Satellite constellations used
for experimental evaluation. Constellation 1 2 3 4

Inspiration Galileo Artificial Dove OneWeb
Number of S/C 39 40 400 1080
Orbit region MEO LEO LEO LEO
Inclination/deg 56 85 97 87.9
Eccentricity/- 0.001 0.001 0.001 0.001
Number of ground stations 2 6 5 6

is significantly slower, i.e., passes and pauses are much longer than
for the LEO constellations. Each of the four cases was simulated for a
schedule of 36 days to compute realistic contact windows. The satellites
continuously generate data whose size and value is determined by a
uniform probability distribution. Details on the simulation are described
by Schaus et al. [17].

4.7.1. Greedy Algorithm

To get a comparison for the schedule quality, we also implemented a
greedy algorithm. It schedules for a time interval (e.g., 1 to 3 hours) all
intervals by iteratively selecting the contact with the highest (relative)
download value until no more contacts can be scheduled. We use one
variant with the highest absolute value and one variant with the highest
relative value (value/length). On tie, the shorter contact is chosen such
that conflicts are minimized. This is fairly similar to how a human
approaches this problem.

4.7.2. Experimental Results

In Figure 4.4 one can see that for the second constellation, almost all data
can be downloaded, even with a greedy approach. For the third and
fourth constellation, our auction-based approach still achieves a relatively
high rate, while the greedy approach drops considerably. The reason is
that it is no longer possible to download all data, so an algorithm has to
make the best choices; this also implies an increasing difference between
value rate and data rate. An excerpt of a schedule is shown in Figure 4.6.
The results for Galileo can be explained by the long contact-less intervals
that keep a lot of the data out of reach.

Figure 4.4.: Data and value rate for dif-
ferent constellations over 36 days. For
the first two experiments with few satel-
lites, the performance of the greedy
approaches and our auction-based ap-
proach are relatively similar. However,
the performance of the greedy ap-
proaches drops significantly for the two
larger experiments while our auction-
based approach still achieves relatively
good rates.
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(b) Contact pauses with optimization.

Figure 4.5.: If you want to keep the contact pauses of a satellite short, you can increase the bids with the length of the current contact
pause in order to easily minimize those. The optimization cuts the maximum pause almost in half for the Dove-like constellation while
barely reducing the data and value rate.

4.7.3. Contact Pauses

Besides the value of the data, one is also interested in minimizing the
maximal pauses between two contacts, i.e., the continuous time without
contact. Both greedy and our auction-based algorithm can have relatively
long pauses without further adjustments. However, the bidder strategy
of the satellites can easily be adapted to keep these pauses small. If the
last scheduled contact of a satellite is too old, the estimated value is
increased based on the time distance such that it continuously increases.
The satellite will now give continuously increasing bids, until it wins a bid
after which this “boost” is reset. The result are much shorter maximum
contact pauses for the satellites (see Figure 4.5), while the downloaded
value is only slightly worse. This shows the flexibility of our approach.

4.8. Conclusion

In this chapter, we have seen an auction-based method for optimizing
the download schedules for large-scale constellations of spacecraft. Our
simulation results on realistic constellations demonstrate the power of

Figure 4.6.: An excerpt of the schedule for the Dove-like instance. The gray strips are adjustments, the colored strips visualize the value
of downloaded data packages. Note that even for 400 satellites, there are still pauses in which no satellite is in range of the ground
station. During the other times, the schedule is packed tightly. The larger OneWeb-like instance does not have any pauses.
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this approach even when using a simple bidding strategy. Ideas for
designing more advanced bidding strategies that potentially further
improve the performance of this approach are listed in Section 4.6. Future
developments can be expected from inter-satellite communications, as
considered in the previous two chapters, which will give rise to even
more complex perspectives of collecting and aggregating data, as well as
more flexibility than strategies involving fixed ground stations.
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Coverage path planning is a fundamental task in mobile robotics, manu-
facturing, and other areas. It allows us not only to optimize industrial
operations like CNC-milling, UAV trajectories, and the tilling and mow-
ing of fields, but can also be employed in personal contexts, e.g., in the
form of a robot vacuum cleaner, which you perhaps already own and use
to clean your living room. There exist various techniques for coverage
path planning, some more advanced than others. Some robot vacuum
cleaners execute their task of cleaning using random patterns, while
others actually map the owner’s apartment (with varying success) and
compute smarter movement patterns (with varying success).

The theoretical work in the current literature mostly considered highly
idealized robot models and environments. By partitioning the area into
robot-sized tiles, we can easily transform the problem into the Traveling
Salesman Problem; this may be NP-hard, but received so much attention
from algorithm engineers that even large instances can usually be solved
to near-optimality. Unfortunately, this completely ignores the dynamic of
the robot and only minimizes the traveled distance. While this is sufficient
for large-scale routing problems like car navigation where the necessary
acceleration after turns is negligible for the overall tour, this can be critical
for turn-heavy coverage tours, e.g., those used by robot vacuum cleaners
or harvester. Minimizing the distance for coverage trajectories can even
introduce many expensive turns in order to prevent redundant coverages
and minimize the traveled distance.

In Chapter 5, we engineer the approximation algorithm for tours with
turn costs in grid graphs, introduced in [18, 27], to solve instances with
up to 300 000 vertices. The computational evaluation shows that this
algorithm yields nearly optimal solutions and performs better than the
only other known approximation algorithm. Additionally, the algorithm
supports penalty and subset variants in which not all vertices need to be
visited.

As the world is not a grid graph, Chapter 6 generalizes this approach
to finding partial coverage paths in complex polygonal environments.
Partial coverage refers to the ability to focus on covering areas deemed
more important, given by a set of weighted polygons. Additionally, it is
also possibly to vary the costs in specific areas. This is achieved by fitting
a grid or mesh onto the area and converting it to a discrete problem. The
corresponding study can also be highly relevant for other grid-based
covering algorithms.

This part furthers the research started in my master’s thesis by transform-
ing its theoretical results into something practically applicable.
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This chapter engineers an approximation algorithm for tours and
cycle covers with turn costs in grid graphs such that instances with
over 300 000 points can be solved. Theoretical insights are used to
transform the instances into an equivalent but smaller problem. The
evaluation afterward shows that the algorithm is often close to the
optimum and has on average a 70 % smaller optimality gap than the
previous algorithm. Additionally, the extension to penalty coverage
is considered and evaluated.

5.1. Introduction

The Traveling Salesman Problem (TSP) is one of the classic tasks of
combinatorial optimization. Easy to describe but NP-hard to solve, it has
given rise to a large body of research focusing on theoretical aspects such
as complexity and approximation. On the practical side, the TSP has also
stimulated significant work in algorithm engineering. Ever since Dantzig,
Fulkerson and Johnson [58] in 1954 presented the provably optimal
solution of a 49-city instance based on an (integer) linear-programming
(IP/LP) approach, IP/LP methods have been used on a wide spectrum
of other optimization problems. With a variety of additional techniques,
the frontiers of TSP instance sizes for which provably optimal solutions
can be computed have been pushed all the way to 85,900 cities; see [104]
for a comprehensive overview.

Research on TSP has also served as the blueprint for a wide range of
other real-world problems, many of them motivated by generalizations
or modifications, such as lawn mowing and milling, where visiting a
discrete set of points is replaced by covering a geometric region with a
tool or sensor. Other variants arise from modified objective functions
or additional constraints, such as the total turn of a tour instead of its
length.

Figure 5.1.: (Left) A drone equipped with an electrical grid for killing mosquitoes. (Middle) Physical aspects of the flying drone. (Right)

Making turns is expensive. See our related video at https://www.youtube.com/watch?v=SFyOMDgdNao for details, and [20] for an
accompanying abstract.

∗ The content of this chapter was presented at ALENEX 2019 [5].

https://www.youtube.com/watch?v=SFyOMDgdNao
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Figure 5.2.: Example of the hardness-
construction for the One-In-Three-Sat-
clause (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧
(𝑥1 ∨ 𝑥2 ∨ 𝑥3) [18]. The size and complex-
ity was strongly reduced since its first
appearance in the master’s thesis [27].
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Figure 5.3.: Satellite image of a real-world
instance arising from mechanized agri-
culture. Notice the tracks resulting from
the use of large-scale agricultural ma-
chinery, and the uneven crop yield, mo-
tivating subset and penalty versions of
the problem. (Image: Google, GeoBasis-
DE/BKG © 2009)

In this chapter we present how to engineer a theoretical approximation
algorithm for computing covering tours and cycle covers with turn cost,
which are of practical significance in areas such as pest control (see Fig-
ure 5.1) and precision farming (see Figure 5.3). (See the related video [20]
https://www.youtube.com/watch?v=SFyOMDgdNao for an animated il-
lustration in the context of fighting mosquitoes.) This includes variants
such as the subset and the penalty versions of the problem, in which
the objective is to cover appropriate subsets of the given region. True to
the spirit of algorithm engineering, the work presented in this chapter
refines and extends the previous theoretical work [18] that discusses
complexity and approximation. This previous work provides a constant
factor approximation algorithm for full, subset, and penalty coverage
with turn costs in grid graphs which we engineer in this chapter. It also
proves the NP-hardness of the cycle cover relaxation of the problem
whose complexity has been open for many years as Problem 53 in The
Open Problems Project [28]. An example of the construction is shown in
Figure 5.2.

5.1.1. Related Work

The problem of minimizing the necessary distance for covering a given
region by a moving tool is known as the Lawnmower Problem; if the tool
is required to stay within the region, we are dealing with the Milling

https://www.youtube.com/watch?v=SFyOMDgdNao
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Problem. See Arkin et al. [105] for a theoretical study, providing approx-
imation algorithms for both variants. They give a 2.5-approximation
for minimum length milling in orthogonal (not necessarily integral)
polygons with a unit square cutter. For simple orthogonal polygons,
an 11/5-approximation is given and, in case we can reduce the prob-
lem to finding a covering tour in a grid graph, a 6/5-approximation
algorithm is given (which improves a previous result of Ntafos [106]
of a 4/3-approximation algorithm). For the mowing variant, a 3 + 𝜖-
approximation is provided that internally uses a PTAS for the Euclidean
TSP.

For covering a discrete set of points in the ℝ2 plane for which only
the turning angles are measured, the problem is called the Angular
Metric TSP. The cost function changes for this problem from a relatively
straightforward sum of edge weights to more involved combinations of
edges at the vertices, making approximation more challenging. Aggarwal
et al. [34] provide an 𝑂(log 𝑛) approximation algorithm for cycle covers
and tours that works even for distance costs and higher dimensions.
Fekete and Woeginger [36] consider the problem of connecting a point
set with a tour for which the angles between the two successive edges are
constrained. Finding a curvature-constrained shortest path with obstacles
has been shown to be NP-hard by Lazard et al. [107]. Without obstacles,
the problem is known as the Dubins path [108] that can be computed
efficiently. For different types of obstacles, Boissonnat and Lazard [109],
Agarwal et al. [110] and Agarwal and Wang [111] provide polynomial-
time algorithms or 1+ 𝜖 approximation algorithms, respectively. Takei et
al. [112] consider the solution of the problem from a practical perspective.
The Dubins Traveling Salesman Problem is considered by Le Ny et
al. [113].

For covering a geometric region in the presence of turn cost, Arkin et
al. [32, 33] provide a first approximation algorithm for tours and cycle
covers in grid graphs with turn cost and show hardness of the tour
variant. Most closely related to this chapter is the theoretical work of
Fekete and Krupke [18] that provides important theoretical progress,
resolving Problem 53 in The Open Problems Project [28] by proving that
finding a cycle cover of minimum turn cost is NP-hard, even in the
restricted case of grid graphs. As a consequence, all relevant problem
variants are NP-hard. They also proved that finding a subset cycle cover
of minimum turn cost is NP-hard, even in the restricted case of thin grid
graphs, in which no induced 2 × 2 subgraph exists. This differs from the
case of full coverage in thin grid graphs, which is known to be solvable
in polynomial time [33]. They also provided a general IP/LP-based
technique for obtaining constant-factor approximations for all problem
variants; some details are described in Section 5.3. This approach includes
the first approximation algorithms for subset cycle covers and tours, as
well as for penalty cycle covers and tours; these are also valid for travel
costs that are linear combinations of turn and distance costs.

Algorithm engineering for covering tours and cycle covers with turn cost
has been more limited. Maurer [114] proves that cycle partition with turn
cost in grid graphs can be solved in polynomial time. He also performed
integer programming experiments on cycle cover and cycle partition. De
Assis and de Souza [115] considered integer programming for tours but
were only able to solve small instances with up to 76 vertices. Fekete and
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Krupke [5] were able to solve instances with more than 1000 vertices to
optimality.

The generalization of the Angular Metric TSP to generic graphs is
called the Quadratic Traveling Salesman Problem where the cost of an
edge can depend on the preceding edge. The solvable instances even for
the geometric angular metric variant are usually very small (below 100
points), see, e.g., [116–118].

Covering a polygonal area by a tour is an important practical problem
known as Coverage Path Planning and, hence, a considerable amount of
work can be found. Two common techniques are putting a grid on the
area as we do, see, e.g., Zelinsky et al. [119] or Gabriely and Rimon [120],
or partitioning the polygon into simple geometric areas (e.g. trapezoidal
map) and use simple patterns to cover these areas, see, e.g., Huang [121].
Optimizing cutter paths is considered by Yao et al. [122] who also
mention the increase of costs due to turns. Planning tractor tours for
crop harvesting operations including turn penalties is analyzed by Ali et
al. [123]. Ahmadzadeh et al. [124] and Agarwal et al. [125] look at covering
tours of UAVs for area observation with restrictions on the turn radii. We
will revisit the practical aspects of this problem again in the next chapter
and provide more related practical work in Section 6.3 (Related Work)
on page 112.

A novel aspect of our approximation algorithm is its ability for partial
coverage, i.e., having optional fields that only induce a penalty on
neglecting. This is strongly related to the Penalty TSP, except for the turn
costs. An overview of such problems and their algorithms, without turn
costs, is given by Ausiello et al. [126]. Turn costs can partially be modeled
by a Generalized TSP (GTSP) in which we have to visit sets instead of
individual vertices. We can model different turns through a vertex by
different vertices in the GTSP’s sets. Helsgaun [127] solved instances with
up to 17 180 sets and 85 900 vertices to near optimality.

5.1.2. Overview

In this chapter we bridge the gap between theory and practice of finding
covering tours and cycle covers with turn cost, and show how to apply
algorithm engineering techniques in combination with refined modeling
in order to compute near-optimal solutions for large instances.

We provide the following main results.

▶ We describe an efficient implementation of an approximation
technique for full/subset/penalty coverage with cycle covers or
tours.

▶ We present a comprehensive computational study of instances with
up to 300 000 pixels, for which we give solutions that are typically
within a few percent of the computed lower bounds.

▶ We also provide a practical comparison of our approximation algo-
rithm with the approximation technique of Arkin et al. [105] that
dates back to 2001; we show that our new LP/IP-based approxi-
mation method closes 70 % of the remaining optimality gap to the
lower bound for a wide range of benchmark instances.
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p0

p1
2 cycles
30 transitions and 10 turns
Penalty for p0 and p1

Figure 5.4.: Example of a penalty cycle
cover whose cost is a linear combina-
tion of the number of transitions and 90◦
turns and the penalties for not covering
𝑝1 and 𝑝2.

5.2. Preliminaries

Given a grid graph 𝐺 = (𝑃, 𝐸), where 𝑃 are unit-sized squares on the
integral grid, also called pixels, and two pixels are joined by an edge
𝑒 ∈ 𝐸 if and only if they are adjacent. In addition, we may be given a
subset 𝑆 ⊆ 𝑃 of pixels or a penalty function 𝜌 : 𝑃 → ℚ+0 . We consider
tours and cycle covers in grid graphs with three variations: Full coverage,
where every pixel has to be covered, subset coverage, where at least a
specific subset 𝑆 has to be covered, and penalty coverage, where every
uncovered pixel 𝑝 ∈ 𝑃 involves a penalty 𝜌(𝑝). The objective function is
an arbitrary but fixed non-negative linear combination of the number of
pixel transitions and turns. For the penalty variant, the objective function
also contains the sum of penalties for uncovered pixel. The number of
turns is measured in 90◦ turns, which we also call simple turns. The cost
of a U-turn (a turn of 180◦) corresponds to two simple turns. A cycle is
a closed sequence of at least two adjacent pixels. A pixel is covered by
a cycle if it is in its pixel sequence. A cycle cover is a set of cycles that
together cover all pixels, while a tour is a cycle cover that consists of a
single cycle. See Figure 5.4 for an example.

To improve the performance (especially for the matching algorithm), we
only use integral weights and penalties. It is easily possible to adapt
the implementation to floating point values. However, one can also
approximate floating point values by scaling. In this case, one has only
to be careful not to create overflows in any part of the algorithm.

5.3. Efficient Implementation

Fekete and Krupke describe in [18] an approximation technique that yields
constant-factor approximations for full/subset/penalty cycle covers and
tours in grid graphs (and even more generic geometric instances). The
purpose of that proof was to establish a constant factor for the worst-case
performance, not practical efficiency. As a consequence, the theoretical
algorithm would struggle (especially regarding memory consumption)
with instances larger than 10 000 pixels, even when exploiting duality
properties to reduce the size of the auxiliary problems. In this section
we give a number of additional algorithm engineering techniques to
turn this worst-case performance into a significantly more efficient
implementation, based on exploiting more refined properties. The result
is an implementation that is able to solve instances with hundreds of
thousands of pixels. The corresponding experimental evaluation is given
in Section 5.4. For easier description, we initially focus on full coverage
cycle covers. The necessary adaptations for the other variants are sketched
in the end.

A fundamental part of the approximation technique are atomic strips,
which allow us to push the turn cost into the edge weights. Similar to
vertices in a grid graph, they encode positions; in addition each atomic
strip also encodes an orientation by having two entries/exits in opposite
directions. Hence, an atomic strip can be interpreted as a strip or line
of zero (or infinitely small) length. For each pixel, we have a horizontal
and a vertical atomic strip, of which at least one has to be in the solution
to cover the pixel. Thus, an Atomic Strip Cover (ASC) is a selection of
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Figure 5.5.: Finding the cheapest cycle
cover and finding the ASC with the low-
est perfect matching are equivalent prob-
lems. If we select the atomic strip that
has either the correct entry or exit ori-
entation, the cost of the matching edges
equals the cost of the cycle. If the wrong
atomic strip is selected, the cost can in-
crease by two turns. The weight of the
matching edges can be computed effi-
ciently (in our efficient implementation,
this is actually not necessary). Covering
a pixel multiple times is not a problem,
because the matching edges can skip pix-
els (for recreating the cycle cover, one
just has to keep track of which ones).

,8d+ 4t

8d+ 4t

16 transitions and 8 turns16 transitions and 8 turns

1d

1d+ 1t

1d+ 1t

1d

1d+ 1t

1d

2d+ 1t

1d+ 1t

3d+ 1t

3d
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d = transition costs

t = turn costs per 90◦

1. Get fractional solution

2. Extract Atomic Strip Cover

3. Match atomic strips

0.5

0.5 1.0

1.0

Figure 5.6.: Example of the approxima-
tion algorithm for a simple full cycle
cover in a grid graph. First a fractional so-
lution for the atomic strip cover matching
formulation is computed via linear pro-
gramming. Strips and edges with value
0 are omitted, while dashed ones have
a value of 0.5. Then the dominant (i.e.,
highest valued) atomic strips of this solu-
tion are selected. The gray atomic strips
are ambiguous, i.e., we could have also
chosen the other one. Finally, a minimum
weight perfect matching on the ends of
the atomic strips is computed. Recall that
the atomic strips do not have any length
(but only an orientation) so the curves in
the corner are actually simple 90◦ turns.

exactly one atomic strip per pixel. A cycle cover is obtained by computing
a minimum weight perfect matching on the endpoints of the selected
atomic strips. The weight of a matching edge equals the minimum cost
of transiting between the two endpoints including the turns at the ends.
It is straightforward to prove that the minimal matching over all possible
ASCs corresponds to an optimal solution, see Figure 5.5 and [18] for more
theoretical details.

In the original algorithm we use an integer program (IP) that combines
finding this ASC with its corresponding matching. This IP is then solved
fractionally; for each pixel, the strip with the higher fractional value for
an ASC is selected. We were able to show that the matching of this ASC
yields a solution at most 4 times higher than the optimal solution by
using polyhedral arguments. See Figure 5.6 for an illustration.

We first show how to implement the ASC and matching parts of the
approximation algorithm for (full) cycle cover. Afterward, we sketch how
to obtain algorithms for subset and penalty coverage, as well as the tour
variants. An extension to other grids is also possible.

5.3.1. Atomic Strip Covers

Formulating the problem of finding the ASC with the best matching
as an integer program requires 𝑂(|𝑃 |) Boolean variables for the atomic
strips and 𝑂(|𝑃 |2) Boolean variables for the matching edges. In addition,
the weight of the matching edges has to be computed, which can be very
time-consuming for large grid graphs.

There are multiple possibilities for formulating the cycle cover problem as
an integer program. Almost all of these formulations are potential replace-
ments for the linear relaxation of the original integer program, because
the solutions can easily be transformed and the proof in [5] only requires
a fractional solution that is a lower bound on the optimum.

Lemma 5.3.1 ([18]) A fractional solution for Atomic Strip Cover and matching
(see Figure 5.6) can be transformed into an integral solution of at most four
times the objective value.

We extract the Atomic Strip Cover from the fractional solution of the
following IP, which we selected based on prior experiments. We use the
non-negative variables 𝑥𝑖 𝑗𝑘 = 𝑥𝑘 𝑗𝑖 ∈ ℕ0 for pixel 𝑝 𝑗 ∈ 𝑃 and adjacent
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Figure 5.7.: There are 10 ways of cover-
ing a pixel; each one corresponds to a
variable of the IP.

pixels 𝑝𝑖 , 𝑝𝑘 ∈ 𝑁(𝑝 𝑗) that state how often the transition 𝑝𝑖 − 𝑝 𝑗 − 𝑝𝑘 or
𝑝𝑘 − 𝑝 𝑗 − 𝑝𝑖 is used, see Figure 5.7.

Let cost𝑗(𝑖 , 𝑘) ∈ ℚ+0 map the cost of this transition. We minimize the
overall coverage costs; Eq. (5.2) enforces a pixel to be covered and Eq. (5.3)
enforces the transitions between two adjacent pixels to match.

min
∑
𝑝 𝑗∈𝑃

∑
𝑝𝑖 ,𝑝𝑘∈𝑁(𝑝 𝑗 )

cost𝑗(𝑖 , 𝑘) · 𝑥𝑖 𝑗𝑘 (5.1)

s.t.
∑

𝑝𝑖 ,𝑝𝑘∈𝑁(𝑝 𝑗 )
𝑥𝑖 𝑗𝑘 ≥ 1 ∀𝑝 𝑗 ∈ 𝑃 (5.2)

2 · 𝑥 𝑗𝑖 𝑗 +
∑

𝑝𝑘∈𝑁(𝑝𝑖 ),𝑝𝑘≠𝑝 𝑗
𝑥 𝑗𝑖𝑘 = (5.3)

2 · 𝑥𝑖 𝑗𝑖 +
∑

𝑝𝑘∈𝑁(𝑝 𝑗 ),𝑝𝑘≠𝑝𝑖
𝑥𝑖 𝑗𝑘 ∀{𝑝𝑖 , 𝑝 𝑗} ∈ 𝐸

Obtaining a fractional Atomic Strip Cover from the fractional solution
of this IP is done as follows. If a coverage variable represents a straight
transition, add its value to the equally oriented strip, otherwise distribute
the value equally between both, because both are valid selections. Our
approximation algorithm selects the dominant strip, i.e., the strip with the
highest value in the fractional solution. See Figure 5.8 for an illustration.
This Atomic Strip Cover equals the selection of an equal weighted
fractional Atomic Strip Cover and matching as in the original algorithm
in [18] and is hence a feasible replacement.

Lemma 5.3.2 A fractional solution of the IP (5.1)-(5.3) can be converted
into a fractional solution (of equal objective value) of the original IP, i.e., a
fractional Atomic Strip Cover with a corresponding fractional matching.

Proof. It is easy to see that for an integral cycle we can easily extract
matching atomic strips and corresponding connecting edges of equal
cost. For transforming a fractional solution, simply multiply the solution
by some value 𝑧 such that all cycles become integral. Do the transfor-
mation independently, i.e., do not care for double coverages, for every
integral cycle and afterward divide the solution again by 𝑧. Remove the
superfluous coverages by connecting matching edges at both ends of
an overused atomic strip directly which does not increase the cost but
decreases the usage of the atomic strip. Note that the original integer
program allowed loop edges in the fractional solution as they cannot
appear in integral solutions and do not harm the proof.

0:5

0:5

0:5

1. Get fractional solution 2. Extract Atomic Strip Weights 3. Select dominant atomic strips

0:5
0:5

0:5
0:5

0:5
0:5

0:5
0:5

0:5 0:5
1:0 1:0

Figure 5.8.: Obtaining the Atomic Strip Cover from the IP (5.1)-(5.3). Note that the overcoverage of some pixel is not a problem, because
we can reduce it by connecting two matching edges of the endpoints of the atomic strip, i.e., skip it without increasing the cost.
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Figure 5.9.: If we add optional atomic
strips (gray), we only need matching
edges between atomic strips of adjacent
pixel. Optional atomic strips can be cre-
ated by adding a zero-cost edge between
its endpoints that allow it to be neutral-
ized if not needed. We need at most three
such optional atomic strips per pixel.

00

0

Future Work 5.1.

Can we improve the LP-relaxation by some additional constraints?
If we reduce the integrality-gap, we directly improve the proved
approximation factor.

5.3.2. Matching

We now have an atomic strip cover, i.e., an atomic strip per pixel, that
we now need to connect to a cycle cover via a matching on the end
points. A naïve matching of the strips results in a quadratic size matching
graph, where each edge represents a connection that has to be computed
and stored. Even when utilizing the dual of the primal-dual matching
algorithm to exclude edges, the memory and time consumption showed
to be too high for larger instances (> 10 000 pixels). However, one can
use the simple structure of a grid graph to solve this problem much
more efficiently: The matching in Figure 5.5 can also be expressed as a
matching that only uses short edges between two adjacent pixels if we
are allowed to add additional strips, see Figure 5.9. We can add such
optional strips by having a zero-cost edge between its two endpoints,
such that it disappears without cost if it is not needed. Recall that we
match the end points of the atomic strips; thus, using the zero-cost edge
effectively removes the corresponding atomic strip. Further, we can limit
the maximally needed strips to two horizontal and two vertical strips
due to the following lemma.

Lemma 5.3.3 (Arkin et al. [33]) If a cycle cover covers a pixel more than
four times or is passed straight more than two times in the same orientation,
the length of the cycle cover and the coverage of the pixel can be reduced by
local optimization without increasing the turns.

The strip of the Atomic Strip Cover does not get such a removal edge,
because it has to be used by the proper cycles, so we are left with 82 edges
per two adjacent pixels and three zero-cost edges per pixel.

5.3.3. Partial Coverage

Subset coverage can be easily expressed as penalty coverage by making
the penalty extremely high for mandatory pixels and zero for optional
pixels. So we can limit ourselves to the penalty coverage variant. The
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Figure 5.10.: Connecting subset cycles
(cycles in black, subset pixel in orange)
by a minimum spanning tree (red edges)
on the components/cycles.

idea for penalty coverage is to introduce an artificial cycle for each pixel
with the cost of the penalty that covers exactly this pixel. For this we can
add an edge to each atomic strip that connects the both endpoints. The
weight of such an edge is the penalty for not covering the corresponding
cycle. When using IP (5.1)-(5.3) we only need to add a Boolean variable
for each pixel that expresses using the corresponding penalty cycle. This
variable needs to be added to the objective function and the coverage
constraint. Whenever the penalty is too high to be a reasonable option
for a pixel, this step can also be skipped and the pixel can be treated like
for full-coverage. See [18] for more details on this idea.

5.3.4. Tours

For full coverage one can always connect two adjacent cycles with at most
two additional turns and two additional transitions as shown by Arkin et
al. [33]. They also showed that if a pixel is covered more than four times
by a tour, we can do a local optimization. Because every cycle has at least
four turns and two transitions on its own, greedily connecting adjacent
cycles provides us an approximation factor of 6.

For subset coverage we do not necessarily have adjacent cycles, but one
can build a graph where every cycle is a vertex and every edge is the
cheapest connection between these two cycles. In [18] we show that
connecting the cycles to a tour via a minimum spanning tree in this graph
(see Figure 5.10) provides us an approximation factor of 10.

For penalty coverage we also have to consider that we could decide not
to cover pixels instead of connecting the cycles. In [18] we show that by
using a 2-approximation for the Prize-Collecting Steiner Tree instead of
a Minimum Spanning Tree, one can obtain a 12-approximation.

5.3.5. Other Grids

The approximation technique including the just presented techniques for
runtime improvement can also be applied to more generic grid graphs
such as triangular or three-dimensional grids. For triangular or three-
dimensional grids we would need three atomic strips per vertex. In
general one has to make sure that for every possible coverage possibility
of a vertex/pixel either incoming or the outgoing orientation matches the
endpoint of an atomic strip. Of course this may need more optional atomic
strips for the matching technique which can become problematic already
for triangular grids. Note that while we are using uniform distance costs
here, the algorithm theoretically allows the usage of heterogeneous edge
lengths. Also, the turning angles would allow some heterogeneity and
hence one could for example also compute solutions for ‘warped’ grid
graphs. Obtaining ‘well deformed’ grid graphs for natural instances, e.g.,
fields for harvesting, instead of just putting a uniform grid over it is a
potential next step to improve the practicality of this approach and is
part of Chapter 6.
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Figure 5.11.: An example instance of
Type I with 7684 pixels.

Figure 5.12.: An example instance of
Type IIa with 10 052 pixels.

Figure 5.13.: An example instance of
Type IIb with 10 004 pixels.

5.4. Evaluation

We implemented and tuned our approximation technique for full, sub-
set, and penalty cycle covers and tours in grid graphs. We used CPLEX
12.7.1.0 and the minimum-weight perfect matching implementation of Kol-
mogorov [128]. For connecting the penalty cycle cover to a tour, we used a
Prize-Collection Steiner Tree implementation (proved 2-approximation)
of Hedge, Indyk, and Schmidt [129]. Furthermore, we implemented the
approximation algorithm of Arkin et al. as a comparison. The (C++)-
code, test instance examples, and further material can be found on
https://github.com/d-krupke/turncost.

We used two different generators for creating random test instances
that are motivated by floor plans. The first one (Type I) uses a random
orthogonal polygon with 20 to 200 vertices and selects all points of a grid
inside of it; see Figure 5.11 for an example. The second one (Type II) takes
a union of random rectangles, with the maximum size of a rectangle
bounded by 𝑂(

√
𝑁), 𝑁 being the desired size. We used two different

parameter settings to obtain instances of different granularity, denoted
by Type IIa and Type IIb; examples are shown in Figure 5.12 for Type IIa
and Figure 5.13 for Type IIb. While the test instances for Type II have
a uniform size distribution, for Type I there are more smaller than
larger instances, because the amount of pixel is harder to control in the
generation process.

The practical computations were performed on regular desktop comput-
ers equipped with an Intel® Core™ i7-6700K CPU @ 4.00 GHz and 64 GB
of RAM. The used CPLEX version was 12.7.1.0. In all cases, the objective
function models the travel cost arising from a linear combination of turn
and distance cost, with a range of different coefficients, accounting for
different relative cost of making turns.

For full cycle covers and tours, Figure 5.14 gives a comparison and
ground truth of our approximation algorithm with the provably optimal
objective values for instance sizes up to about 1000 pixels; it can be seen
that the computed value is mostly within 1 % to 2 % resp. 2 % to 5 % of
the optimum. Instances of Type IIb seem to be slightly better which can
be explained by the rougher boundary that has more necessary turns
increasing the objective.

The performance of our new approximation method (FK) and the one
by Arkin et al. (ABD+) for larger instances is analyzed in Figure 5.15 We
use the lower bound provided by the linear relaxation as a reference
such that the y-axis is an upper bound on the relative optimality gap.
A value of 5 % means that the solution is on average at most 5 % above
the optimal objective. We can see that overall, FK closes about 70 % of
the gap left by ABD+. The performance of FK even improves for larger
instances, especially for instances of Type I. This can be explained by
the instance generation that tends to increase the area faster than the
boundary complexity. Instances of Type IIb have the highest optimality
gap which is slightly contradicting to the previous experiment. This
can be explained by a weaker linear relaxation on these more complex
instances with many turns. Especially, 1/2-u-turns on already covered
pixels allow creating paths instead of cycles in the linear relaxation. Tours
show, as expected, to have a slightly higher (+2 % to 3 %) optimality gap

https://github.com/d-krupke/turncost
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Figure 5.14.: Relative performance of the new approximation algorithm compared to the optimal solution, for instances of Type IIa
and Type IIb. For cycle covers (left) it can be seen that the approximation algorithm mostly produces very small gaps for cycle cover; it
often finds the optimum, most of the other times it is within less than 1 % to 2 % of the optimum. This indicates that for larger instances,
a major part of the remaining gap may be due to the heuristic lower bound, implying that the quality of the found solution is even
better. For tours (right), the performance is worse, due to heuristic greedy merging of cycles into a tour. The objective function is a linear
combination of 50 times the number of simple turns, plus the number of pixel transitions. Only instances that could be solved within
15 min to optimality by an integer program [5] are considered (318 for cycle cover, 270 for tours).

but overall it remains well below 10 % for our algorithm. Only for small
instances of Type I there are higher values. Note that the plots only show
the mean and the 95 %-confidence interval; there are some outliers in
which our algorithm is around 50 % above the lower bound.

The weight of the turn costs has an influence for instances of Type I
and IIa, with a higher weight resulting in a higher gap. For instances
of Type IIb, the turn costs seem to have no clear effect except that the
variance is reduced. The results for ABD+ regarding the weight of the
turn costs can be slightly confusing as it seems shuffled. This is because
we take the weights into account for the matching phase of this algorithm.
While this does not correspond to the original version, it can only improve
the result. If we would not do this, the lines should be ordered as they
would be based on the same solutions. The fractional solutions can differ,
too, but should show similar results for FK if they would be the culprit.

A runtime comparison for our approximation algorithm for cycle cover is
given in Figure 5.16. For some instances of Type II (in particular, for those
of Type IIb with the “roughest” boundaries), the runtime is affected by
the effort for solving the linear program and computing the matching
(as shown in Figure 5.16). While a higher turn cost seems to affect the
runtime negatively, this effect is low compared to the general deviation.
Our optimized implementation of our new approximation method (FK)
was frequently faster than our naïve implementation of the approximation
algorithm by Arkin et al. (ABD+); however, this is an unfair comparison
and an optimized implementation of the later should be visibly faster
such that we only have an advantage regarding the solution quality.

Finally, results for the penalty variants of optimal cycle covers and tours
for instances of Type IIa up to 50 000 pixels are shown in Figure 5.17.
Despite the more involved objective function and solution space, the
optimality gap compared to a fractional lower bound is typically about
20 % and never more than 50 %, even for the tour version. The higher the
penalty, the better is the value. This can be explained by that it becomes
closer to the original full-coverage version with a higher penalty as fewer
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(c) Cycle Cover (Type IIa)

0 20000 40000 60000 80000 100000

Instance size (Number of pixels)

0

5

10

15

20

25

30

35

40

O
b

je
ct

iv
e

(%
ab

ov
e

L
B

)
Lower is better

(d) Tour (Type IIa)
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(e) Cycle Cover (Type IIb)
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Figure 5.15.: Relative performance of the approximation methods for very large (but simple) instances of Type I and large (and more
complex) instances of Type IIa and Type IIb. For examples of these instances see Figure 5.11, Figure 5.12, resp. Figure 5.13. The objective
function is a linear combination of 𝑐 times the number of simple turns, plus the number of pixel transitions, for 𝑐 = 5, 50, 500. The
lower bound is provided by the fractional solution. The difference between the cycle cover version and the tour version is in most cases
insignificant, because the cycles are usually relatively large, so the cost of connecting the cycles is negligible compared to the costs of the
cycles themselves. There are at least 1000 instances per instance type, for Type I even 3000.
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Figure 5.17.: Performance of the penalty
variant of the new approximation algo-
rithm on instances of Type IIa. The cost
of a simple turn is 500× that of a pixel
transition, while the penalty for missing
a pixel is 100, 50 or 20 times the cost of
a pixel transition. The ‘pockets’ at the
boundaries make instances of this type
particularly challenging, because paying
the penalty instead of performing expen-
sive detours is a non-trivial alternative.

pixels are worth skipping. The penalties are uniform for all pixels to
make the analysis easier, but the implementation also supports individual
penalties.

5.5. Conclusion

This chapter showed how we can compute near-optimal solutions even
for large instances with 300 000 pixels of tour planing problems with
turn costs in grid graphs. By carefully replacing the critical tasks of the
original algorithm by equivalent but much smaller and faster tasks, we
transformed a theoretically polynomial but impractical algorithm to a
well scaling practical algorithm while maintaining the quality guarantees.
The used techniques are not only much faster but also much simpler than,
e.g., complex primal-dual optimizations of the original algorithm. As a
consequence, practical problems of precision farming and pest control
that were previously relying on local heuristics without any performance
guarantee can now rely on well-understood algorithmic techniques with
excellent performance guarantees. This shows the power of algorithm
engineering techniques, demonstrating that new theoretical algorithmic
insights can be turned into important practical breakthroughs.

There is a considerable range of practical future developments. These
include adapting the techniques to further practical problems, in which
covering tours are one component of integrated optimization problems
involving several types of agricultural robots. In addition, new progress
in precision farming (which aims at making use of refined data describing



108 5. Engineering an Approximation Algorithm

intricacies of plant growth and ground yield) will make it relevant to
adjust subset and penalty tours according to changing situations. We
can be optimistic that demonstrating the practical benefits of algorithm
engineering will be helpful for future interdisciplinary collaboration in
the context of digital agriculture.

The next chapter builds on the proposed techniques of this chapter, but
extends them to more complex instances beyond regular grid graphs. It
also confirms the near-optimality of this approach for more complex and
irregular grid graphs.



1: This was achieved by using a different
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for (nearly) optimal solutions. This ap-
proach is not only faster but also simpler
to implement.
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This chapter implements a coverage tour optimizer for polygonal
environments considering the robot’s movement dynamics, and al-
lowing partial coverage focused on important areas. We analyze how
to convert the area into a well-fitting grid or mesh, and we adapt the
approximation algorithm for regular square grids of the previous
chapter to work on arbitrary meshes. After adding additional opti-
mizations, this results in a powerful framework to optimize practical
coverage trajectories with a theoretical foundation.

6.1. Introduction

Coverage path planning is an important problem for many different
applications such as aerial surveillance [130], cleaning [131], milling [132],
mowing [133], and more. It has already received a considerable amount
of attention, mostly from a practical perspective, but also with some the-
oretical results. The problem is provably hard to solve on multiple levels,
as it contains NP- and PSPACE-hard problems such as the Traveling
Salesman Problem (TSP), Covering, and the Piano Mover Problem.

The probably simplest theoretical abstraction of the problem is the TSP
in Grid Graphs. Here, we simply place a regular grid over the area
and compute the shortest tour that visits all vertices at least once. The
resolution of the grid is chosen such that visiting all vertices of the
grid results in a (nearly) complete coverage. Because the TSP appears
in many applications, it is probably one of the most well researched
optimization problems, such that there are highly capable solvers despite
its proved hardness. The Concorde solver [134] is able to solve instances
with thousands of vertices to proved optimality [135] and there are other
algorithms that can compute reasonably good solutions for much larger
instances. Concorde is also used to optimize coverage paths, e.g., by
Bormann et al. [131]. However, TSP in Grid Graphs is too strong of a
simplification of the involved dynamics. The solutions, even the optimal
ones, are often expensive to follow because the turns induce significant
costs despite their short length. This is addressed in the problem Milling
with Turn Costs, which not only minimizes the length but also the sum
of turn angles the tour performs through the grid [33]. Unfortunately,
turn costs increase the complexity of the problem such that not only itself
but already the cycle cover relaxation becomes NP-hard [18]. While we
were able to increase the size of optimally solvable instances from less
than 100 vertices [115] to over 1000 vertices [5] 1, the still large difference
to classical TSP shows the limits of computing optimal solutions for
realistic dynamic models, even for strongly simplified environments.

Besides complex dynamics, we sometimes do not need to cover the whole
area. A true 100 % coverage is in many cases even not achievable because
the tool simply does not fit into every corner. Instead, we have a feasible
area that allows us to move in, and a smaller subset of it that is actually
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Figure 6.1.: Example instance and solution of partial coverage with a circular tool. The instance consists of a feasible area (polygon with
dashed line denoting the feasible positions), valuable areas (green) that yield a reward when covered, and expensive areas (red) that
multiply the touring costs consisting of distance and turn costs. We search a trajectory (black) that maximizes the covered value (covered
area highlighted in blue) and minimizes the touring costs. In this example, the valuable area within the expensive area in the middle is
barely covered because it is not worth the costs. The expensive area is only crossed twice to connect the two larger valuable areas.

‘valuable’. A vacuum robot can move within the whole room, but often
there are dirt-prone areas and cleaner areas, which do not need to be
cleaned every time. A harvester can move along the whole field, but
crop yield can be heterogeneous; the harvester does not need to harvest
everything, rather only most of the harvest. For aerial supervision, there
are areas of higher and lower interest. Additionally, there may be areas
that are harder to pass than others. For example there can be a fluffy
rug that slows down the vacuum robot, a muddy area that hinders the
harvester, or inhabited areas that should be avoided by an unmanned
aerial vehicle (UAV). The algorithm of the previous chapter is able to
optimize for partial coverage only in regular square grids, which do not
represent real environments.

In this chapter, we generalize the algorithm of Chapter 5 to deal with
arbitrary polygonal instances. We are given a polygonal area in which
we can move with a circular tool or robot that covers everything within a
fixed radius 𝑟. The feasible area contains all feasible positions, as we need
to stay at least 𝑟 away from the boundary. Additionally, we have valuable
polygonal areas that reward us on (partial) coverage, and expensive
polygonal areas that increase the touring costs within. An example with
a solution can be seen in Figure 6.1. A solution is a tour that minimizes
the missed value (the part of the valuable areas that is not within a
distance of 𝑟 to the tour) as well as the touring costs. If only half of a
valuable area is covered, we miss half its value. The touring costs are a
linear combination of distance and turn-angles, which are potentially
multiplied if the part of the tour is within expensive areas.

In the following section, we first give a formal description of the problem
in Section 6.2. This definition is purely for mathematical clarity and can be
skipped by most readers. Afterward, we give an overview of the related
work and support for the used model in Section 6.3. In Section 6.4, we
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describe how to generalize the approximation algorithm of the previous
chapter. Understanding the approximation algorithm beforehand is
useful, but not necessary as all steps are extensively visualized to give
an intuition on what is going on. In Section 6.5, we study and evaluate
different grids and meshes to transform a polygonal instance to a graph-
based instance. This part may be of interest if you want to design your
own grid-based coverage path planning algorithm. In this case, you can
jump directly to that section. Finally, we consider the influence of our
optimizations in Section 6.6, and the quality of our solution on the grid,
independent of the grid quality, in Subsection 6.6.4. As usual, the chapter
is closed with a conclusion and summary in Section 6.7.

6.2. Problem Definition

We evaluate our optimization approach on a simplified, but still generic
two-dimensional geometric model, which we define in this section. This
model can be adapted to many realistic scenarios, and many specifications
are not due to algorithmic limitations but only used to simplify the
evaluation. While a simulation based evaluation would yield more
realistic results, it would be less generic and require a large set of realistic
instances, which is hard to come by.

Let us first discuss how we model the robot. In the following, we
primarily speak of robots, but generally all kinds of tools like milling
machines or UAVs are included. We model the robot as a circle of radius
𝑟 > 0, and its position 𝑝 ∈ ℝ2 is defined by its middle point. The
robot immediately covers everything below it, i.e., if it is at position 𝑝,
Cov(𝑝) = {𝑝′ ∈ ℝ2 | | |𝑝 − 𝑝′ | | ≤ 𝑟} is covered. This makes the robot
rotational invariant and simplifies many computations. The circular
coverage may seem unrealistic at first glance for, e.g., a mower; but in
a tour, the coverage of a line perpendicular to the trajectory is nearly
identical to that of a circle.

The environment, e.g., walls or obstacles, can restrict the robot’s move-
ment. We denote the feasible area 𝐹 ⊂ ℝ2 as the set of all feasible positions
of the robot and approximate it by a (non-simple) polygon. In the exam-
ples and evaluations, we start with a larger polygon representing, e.g., a
room, and shrink it by removing the parts too close to the boundaries.
𝐹 does not need to coincide with the coverable area, which allows us to
separate the robot’s shape from its coverage.

We define the trajectory 𝑇 of the robot as a closed chain of waypoints
𝑤0 , 𝑤1 , . . . 𝑤 |𝑇 |−1 ∈ 𝐹. The robot moves in straight lines between the
waypoints. We denote the corresponding segments by Segments(𝑇) =
𝑤0𝑤1 , 𝑤1𝑤2 , . . . , 𝑤 |𝑇 |−1𝑤0 and demand that all segments 𝑠 ∈ Segments(𝑇)
are fully contained in the feasible area 𝐹. The trajectory in the following
part is also called tour, in accordance with the previous chapter. An
intermediate solution of multiple (closed) trajectories that still have to be
connected to a tour is called a cycle cover, and its elements are cycles or
subtours.

Additional to the feasible area 𝐹, we have valuable areas and expensive
areas. Valuable areas Q = 𝑄0 , 𝑄1 , . . . ⊂ ℝ2 with weights 𝑡(𝑄𝑖) ∈ ℝ+

represent the parts we want to cover. Expensive areas E= 𝐸0 , 𝐸1 , . . . ⊂ 𝐹
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We use |𝑄 | to denote the size (area) of a
polygon 𝑄 and the pure 𝑄 to denote the
set of all contained points.

with weights 𝑚(𝐸𝑖) ∈ ℝ+ represent areas with increased touring costs.
Both types of areas are again approximated by polygons to simplify the
computations.

The objective is to compute a feasible tour that maximizes the coverage
value and minimizes the touring costs. To combine maximizing the
coverage and minimizing the costs, we convert the maximization of
the coverage into a minimization. This is achieved by considering the
opportunity loss, i.e., the value of the missed area.

min
𝑇

CoverageLossQ,𝑟(𝑇) + TourCostE(𝑇) (6.1)

s.t. 𝑠 ⊆ 𝐹 ∀𝑠 ∈ Segments(𝑇)

The advantage of this objective over others is that its lower bound is
zero, which allows a better comparison. We define the coverage loss and
touring costs in the following.

Let 𝐶𝑟(𝑇) = {𝑝 ∈ ℝ2 |∃𝑠 ∈ Segments(𝑇), 𝑝′ ∈ 𝑠 : 𝑝 ∈ Cov(𝑝′)} denote the
covered area of a tour. Note that the inclusion of a point in a segment is
defined as lying anywhere on the segment and not just on its endpoints.
This allows us to define the coverage loss formally by the maximally
achievable coverage value minus the actually achieved value.

CoverageLossQ,𝑟(𝑇) =
∑
𝑄∈Q
|𝑄 | · 𝑡(𝑄) −

∑
𝑄∈Q
|𝑄 ∩ 𝐶𝑟(𝑇)| · 𝑡(𝑄)

The touring costs consist of weighted distances and turn angles.

TourCostE(𝑇) = �0 · DistCostE(𝑇) + �1 · TurnCostE(𝑇)

The two weights �0 ,�1 ≥ 0 allow weighting the distance and tour
costs, and we vary them in our experiments. Let �E : ℝ2 → ℝ+ define
the cost multiplier at a tool position, which allows us to model local
cost changes induced by the environment. It is computed by �E(𝑝) =∏

𝐸∈E,𝑝∈𝐸 𝑚(𝐸).

The distance costs are now defined as

DistCostE(𝑇) =
∑

𝑠∈Segments(𝑇)

∫
𝑝∈𝑠

�E(𝑝) 𝑑𝑝 (6.2)

For E= ∅, this becomes ∑𝑠∈Segments(𝑇) | |𝑠 | |. The turn costs only occur at
waypoints and are also subject to the multiplier.

TurnCostE(𝑇) =
|𝑇 |−1∑
𝑖=0

�E(𝑤𝑖) · Turn(𝑤𝑖−1 , 𝑤𝑖 , 𝑤𝑖+1) (6.3)

Turn(𝑝0 , 𝑝1 , 𝑝2) denotes the turn angle at 𝑝1 while traversing 𝑝0 → 𝑝1 →
𝑝2. The indices of the waypoints are taken modulo |𝑇 | to form a cycle.

6.3. Related Work

This section provides related and previous work on coverage path plan-
ning from a theoretical and practical perspective. We focus on the areas of
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the classical full-coverage, as well as variants that allow a partial coverage,
as in our model. Additionally, we provide an overview of previous work
on more complex touring cost estimations, especially including turn costs.
Our touring cost model, based on experimental evaluation, was strongly
motivated by previous work on drones. Additional related theoretical
work can be found in Section 5.1.1 (Related Work) on page 96.

6.3.1. Full Coverage

Planning a trajectory for a tool to cover an area, e.g., mowing a field or
vacuuming a room, is known as the Coverage Path Planning problem (CPP).
The CPP already enjoyed a lot of attention for different applications,
models (e.g., multi-robot), constraints, and objectives, as can be seen in
multiple surveys [130, 131, 136, 137]. There are multiple approaches, the
two most prominent being: (1) decomposing the larger area into simpler
areas that can be covered using spiraling or zigzag patterns ([138–140])
and (2) applying a (regular square) grid onto the area, where each grid cell
roughly represents the coverage area, converting the geometric coverage
problem into a discrete touring problem on grid graphs ([141–145]). In
this chapter, we (again) use the second approach but try to fit the grid to
the polygonal area, sacrificing its regularity. Finding a good grid can be
challenging but is fundamental for this approach, as we see later in this
chapter. When only considering the length of the trajectory, the problem
becomes the famous Traveling Salesman Problem (TSP). Even in regular
square grids, it is NP-hard [146] but there exist highly engineered solvers
like Concorde [135] that are able to solve TSP-instances with 85 900
vertices to provable optimality. The TSP is theoretically and practically
very well researched; we refer the curious reader to [147]. When adding
turn costs, which is advisable for an accurate model of reality as we
see soon, the problem gets more complicated. Even previously simple
relaxations become NP-hard [18] but constant-factor approximations are
available [33]. Recently, we were able to increase the size of instances that
can be solved to optimality within minutes from around 100 vertices [115]
to over 1000 and nearly optimal instances to even over 300 000 vertices [5],
also described in Chapter 5 (Engineering an Approximation Algorithm)
on page 95. This chapter utilizes this approach but applies it to more
complex, irregular grids.

For general graphs, tours including turn costs are incredibly hard. If the
turn costs correspond to geometric turn-angles, the problem is known
as the Angular Metric TSP. The currently best known approximation
algorithm by Aggarwal et al. [34] only achieves a factor of 𝑂(log 𝑛). For
more general turn costs, it is known as the Quadratic TSP and also plays
an important role, e.g., in bioinformatics [148].

6.3.2. Partial Coverage

We consider the problem of partially covering the area, based on weighted
subareas, allowing the tour to focus on the important areas and skip less
important areas.

Murtaza et al. [142] compute a full-coverage of the area, but prioritize
subareas based on a probability distribution to find targets quickly.
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Sharma et al. [144] also compute a full-coverage of the area, but with a
limited budget, resulting in multiple tours that try to efficiently cover as
much as possible. Both consider only distance costs in a square grid.

Jensen et al. [149] and Soltero et al. [150] perform coverage without a fixed
radius, but minimize the distance of (weighted) points of interests to the
trajectory. Jensen et al. [149] do this under an energy budget constraint that
also considers the number of turns, while Soltero et al. [150] minimize a
combination of the length of the tour and the distance of the tour to points
of interests. This model is feasible for some inspection or surveillance
problems and allows creating tours with varying resolution, but is not
feasible for tools, like lawn mowers or cleaning robots, with strict radii.

Papachristos et al. [151] and Ellefsen, Lepikson, and Albiez [152] consider
partial inspection of three-dimensional structures with distance and turn
costs. Papachristos et al. [151] try to maximize the inspection reward of
weighted sites subject to time constraints. However, the focus is less on
covering area and more on touring a subset of sites. Ellefsen, Lepikson,
and Albiez [152], on the other hand, focus on the surface of a single object
with a multi-objective optimization for maximizing the covered surface
while minimizing the needed energy. While both problems have a strong
resemblance to our problem, the coverage models are very different and
are not directly applicable to our targeted scenarios.

6.3.3. Touring Costs

A reasonable amount of work on covering considers models with distance
and turn costs in various degrees, such as only minimizing the number
of turns [149], the sum of turn angles [141, 145, 151] (like us), or even
model- and experiment-based cost functions [138, 153].

Cabreira et al. [153] and Modares et al. [145] independently performed
experiments to evaluate the real energy costs of multicopters. Modares
et al. [145] results indicate nearly linear costs for the length and for
the turn-angle, resulting in a simple linear combination of traveled
distance of a tour and the sum of turn angles, supporting our model. The
energy consumption is also primarily based on how long the multicopter
has to stay in the air. Cabreira et al. [153] also show a nearly linear
necessary deceleration for turns but only starting at 50◦, below which no
deceleration is performed. Incorporating this into our model, however, is
dangerous, as every larger turn could be divided into small turns and
would need additional constraints. Contrary to the findings of Modares
et al. [145], the straight distances in [153] did not have linear costs as the
drone can accelerate more on larger distances, see also the prior work of
Di Franco and Buttazzo [154]. Linear distance costs are still a reasonable
approximation, considering that the maximum velocity is often quickly
reached.

The costs are often not homogeneous but can change within an area due to,
e.g., wind fields for UAVs [155] and difficult terrain or inclinations [133]
for ground-based vehicles. However, only few consider this for CPP,
e.g., [133, 143]. More can be found for simple path planning [156–158].
Location-dependent cost modifiers also allow modeling of soft obstacles
that can be crossed if necessary, but induce a penalty and should be
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2: The visualizations in this chapter use a
Bézier curve-based smoothing to make the
tours look more natural, but the coverage
computations are not smoothed.

avoided. We allow such modeling by denoting polygonal subareas in
which the costs are multiplied by specified factors.

Our approach computes an ordered set of waypoints which includes
turns, that are too hard to be efficiently executed directly by many
robots. These, however, can be smoothed: Nam et al. [159] (using cubic
interpolation), Artemenko et al. [160] (using rational quadratic Bézier
curves), or Forsmo et al. [161] (using a more involved MIP-formulation
that considers a lot of the dynamic). The optimal approach depends
heavily on the dynamics of the robot, and is thus skipped here.2

6.4. Generalized Algorithm

In the previous chapter, Chapter 5, we engineered an approximation
algorithm to compute nearly optimal solutions for instances with 300 000
pixels in regular square grids. In this section, we show how to adapt
this algorithm to solve polygonal instances including expensive and
valuable areas. More precisely, we show how to approximate the area
using an embedded graph, and we adapt the previous algorithm to work
on arbitrary embedded graphs.

The generalized algorithm has seven steps:

1. Discretization: Convert the polygonal instances to a discrete graph
that approximates the area. We call this graph a grid or mesh, based
on its properties.

2. Fractional Solution: Compute a fractional solution in this graph
using linear programming.

3. Atomic Strips: Select atomic strips, including the dominant one,
using the fractional solution. This step is more complicated for
general meshes than for regular square grids, which can be solved
as discussed in Chapter 5.

4. Matching: Perform a matching on the atomic strips and obtain a
cycle cover.

5. Local Optimization: Improve the cycle cover by heuristics.
6. Connecting Cycles: Connect the cycles to form a tour.
7. Local Optimization: Improve the tour by heuristics.

We now consider these steps in detail. Additional evaluations of the
performance are performed in the sections thereafter.

6.4.1. Step 1: Discretization

Before we can apply our approximation technique, we have to convert the
polygonal area into a graph of potential waypoints. Instead of a complex
geometric problem, we then just have to find a tour in a graph where
each vertex yields some coverage, and the touring costs are based on the
used edges and edge transitions.

The simplest and most common strategy is to place a regular square
grid over the feasible area. The points and edges that are fully contained,
become our graph. This would also directly allow us to use the algorithm
of the previous chapter. However, this is not always optimal. Other
options are to use regular triangular grids or irregular generated meshes.
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(c) Mesh.

Figure 6.2.: Different grids for transforming a polygonal instance to a graph instance that can be solved with a variation of the
approximation algorithm. The green area is the area to be covered but due to the robot’s radius, we can only place waypoints inside the
dashed area. We can rotate a regular grid to fit especially the interior area nicely. Alternatively, we can use an irregular grid created by a
meshing algorithm. It can better adapt to the shape (especially the boundary) of the area, but its irregularity can also make it more
expensive for coverage inside the polygon.

To keep the computational costs low, it is generally better to have fewer
vertices and a low edge degree at the vertices. Not only the computational
costs increase, also the quality of the relaxation decreases at vertices with
more neighbors. Examples with various grids can be seen in Figure 6.2.

Computing the edge costs and the turn costs at the vertices is straight-
forward and can directly use the definition in Section 6.2. The graph
is just a subset of the actual solution space, and so we can simply
precompute the costs of the individual parts used by the graph. The
value of covering a vertex is more complicated. We can simply assign
the value that the robot covers when being at this point, but this can
easily over- or underestimate the real value. It can underestimate the
value if the real coverage actually happens when moving to and from the
vertex. It can overestimate the value if other vertices are close by, and the
coverage areas are overlapping. Generally, it is good if the sum of values
in the graph also equals the maximal value in the original instance. We
could simply scale all the values to achieve this but as the graph can have
a heterogeneous distribution, using a Voronoi diagram is a better option.
The Voronoi diagram is a classical method from Computational Geometry
which partitions the area such that each vertex gets the area assigned
closest to it. Using the value of these areas gives us a value assignment
that equals the original values and is sensitive to the neighborhood of
the vertices. This can be seen in Figure 6.3.

In the following, we denote the resulting graph by 𝐺 = (𝑃, 𝐸) and call
𝑃 (potential) waypoints. Every tour 𝑇 on 𝐺 consists of segments in 𝐸,
which are fully contained in the feasible area, and is, thus, a feasible
tour in the original polygon. We denote the coverage value assigned to
a waypoint 𝑝 ∈ 𝑃 by val(𝑝), and it corresponds to the coverage value
of 𝑝’s Voronoi cell. The distance cost of an edge 𝑝𝑝′ ∈ 𝐸 is defined by
dist(𝑝, 𝑝′) =

∫
𝑥∈𝑝𝑝′ �E(𝑥) 𝑑𝑥, according to Equation 6.2. The turn cost

of passing 𝑝 through the neighbors 𝑛 and 𝑛′ ∈ 𝑁(𝑝) is defined by
turn(𝑛, 𝑝, 𝑛′) = �E(𝑝) · Turn(𝑛, 𝑝, 𝑛′) according to Equation 6.3.

Obtaining a good graph is a fundamental problem, and the whole Section
6.5 (Grids and Meshes) on page 128 is focused on it.
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(a) Instance with graph.
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(c) Robot’s coverage at waypoints.

Figure 6.3.: Computing the value of a vertex, especially when using irregular grids, should use Voronoi diagrams or similar techniques
to obtain a nice partition of the area, as seen in (b). Using only the area covered at the corresponding waypoint yields under- and
overestimation due to ignored area that would indirectly be covered by using edges and intersecting ranges, as seen in (c). The
corresponding instance with the graph is shown in (a). Underestimating the value of a waypoint can result in the algorithm skipping it.
Overestimating the value of a waypoint can result in the algorithm including it at a high cost.
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Figure 6.4.: Fractional solution in red for
full-coverage. The line thickness denotes
the fractional value. For some areas, the
fractional solution already provides an
integral tour.
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Figure 6.5.: Fractional solution in red for
partial coverage. The line thickness de-
notes the fractional value. The valuable
areas are in green (the thickness repre-
sents the value).

6.4.2. Step 2: Fractional Solution

Now that we have a discrete graph with weights and values, we can
obtain a fractional solution by using linear programming. Examples for
fractional solutions covering the whole area or for partial coverage are
given in Figure 6.4 resp. Figure 6.5. This is nearly identical to the original
approximation algorithm and provides us with good orientation hints
for the next step in Subsection 6.4.3.

Given the graph 𝐺 = (𝑃, 𝐸), we work on passages 𝑢𝑣𝑤 = 𝑤𝑣𝑢 that cover
a waypoint 𝑣 ∈ 𝑃 coming from or going to the neighbored waypoints
𝑢, 𝑤 ∈ 𝑁(𝑣). For every passage 𝑢𝑣𝑤, the variable 𝑥𝑢𝑣𝑤 ≥ 0 denotes how
often the passage is used. The cost of using the passage is defined by
cost(𝑢𝑣𝑤) = turn(𝑢, 𝑣, 𝑤)+1/2 (dist (𝑢, 𝑣) + dist (𝑣, 𝑤)). We use only half
the distance, because otherwise the distance would be doubly charged by
the two incident passages. Additionally, we use the variable 𝑠𝑣 ≥ 0 that
denotes skipping the waypoint and consequently eliminating its value.

min
∑
𝑣∈𝑃

val(𝑣) · 𝑠𝑣 +
∑

𝑢,𝑤∈𝑁(𝑣)
cost(𝑢, 𝑣, 𝑤) · 𝑥𝑢𝑣𝑤 (6.4)

s.t.
∑

𝑢,𝑤∈𝑁(𝑣)
𝑥𝑢𝑣𝑤 + 𝑠𝑣 ≥ 1 ∀𝑣 ∈ 𝑃 (6.5)

2 · 𝑥𝑤𝑣𝑤 +
∑

𝑢∈𝑁(𝑣),𝑢≠𝑤
𝑥𝑤𝑣𝑢 = (6.6)

2 · 𝑥𝑣𝑤𝑣 +
∑

𝑢∈𝑁(𝑤),𝑢≠𝑣
𝑥𝑣𝑤𝑢 ∀𝑣𝑤 ∈ 𝐸

The objective in Equation 6.4 simply minimizes the missed coverage
value and touring costs. Equation 6.5 enforces a waypoint either to be
covered or skipped, and Equation 6.6 enforces a consistent flow, i.e.,
every edge is used equally from both sides.

We can perform a few optimizations if the value of a waypoint 𝑣 ∈ 𝑃
is very high or very low. Whenever the value of a waypoint is zero, the
constraint in Equation 6.5 that enforces coverage as well as the skipping
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Figure 6.6.: The fractional solution of
Figure 6.5 after some branch and bound
iterations to improve the relaxation.

variable are unnecessary. If the value is very high, i.e., higher than the
touring cost of a small cycle over a neighbor, 𝑠𝑣 can be directly fixed to
zero because it is too valuable to be skipped.

Of course, we could already try to connect fractional subtours to form
a tour. This is more complicated than for the classical TSP for multiple
reasons:

▶ Waypoints do not have to be visited at all.
▶ Waypoints can be visited multiple times.
▶ There can be cycles that visit the same waypoint, but are not

connected.

We describe MIP-constraints in [19, 27]. Due to a Big-M notation in them,
the corresponding relaxation is rather weak and not very useful for
fractional solutions. Additionally, the next steps of our algorithm try to
optimize a cycle cover first, and prematurely optimizing for tours could
actually harm the next steps.

A feasible optimization is to improve the LP-relaxation by performing
some branch and bound steps, thereby making it more integral. This is
also performed by MIP-solvers like Gurobi, but with a different focus.
While Gurobi primarily wants to compute an integral solution (which
would take too long), we just want to achieve a more integral relaxation.
The improved relaxation is just a by-product of Gurobi. We can tell
Gurobi to focus on improving it, but unfortunately there does not seem
to be a way to access it. Luckily, this part is reasonably easy to implement
ourselves, and the only difficult decision is to decide on the variable to
branch on. We always work on the least expensive leaf and return it after
a specified number of branching steps. Gurobi would also perform some
cutting planes, like Gomory’s Cut [162], which we discard because of
their complexity to integrate. Note that continuing to optimize a model
after adapting the variable bounds is much faster than the initial run
because a lot of the work can be reused (also called warm-start). An
example can be seen in Figure 6.6, where we applied this approach to
the example in Figure 6.5. The variable to branch on is selected by

argmax𝑢𝑣𝑤cost(𝑢𝑣𝑤) · frac (𝑥𝑢𝑣𝑤) ·
∑

𝑛,𝑛′∈𝑁(𝑣)
frac (𝑥𝑛𝑣𝑛′)

where frac(𝑥) = |𝑥 − round(𝑥)| denotes the difference to the closest
integer. The idea is to prioritize expensive waypoints that have many
non-integral passages, or forks, and force them to decide for one. We will
look into this optimization again in Subsection 6.6.1.

6.4.3. Step 3: Atomic Strips

In this step, we convert the instance such that we can use a minimum-
weight perfect matching to compute an integral cycle cover, i.e., a solution,
that is allowed to consist of multiple tours. Without turn costs, an optimal
cycle cover can actually be computed in polynomial time because the
costs of the edges are independent. With turn costs, the cost of an edge
depends on orientation of the preceding edge, making the problem
NP-hard even in grid graphs [18, 27]. We use the fractional solution of
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Figure 6.7.: Replacing every waypoint
by an atomic strip (black segments) con-
verts the problem into a matching prob-
lem without losing the turn costs. The
orientation of each atomic strip needs to
be guessed from the fractional solution
(Figure 6.4), and wrong guesses can de-
grade the solution.

Figure 6.8.: Segments (black) can be con-
nected to a cycle cover via a minimum-
weight perfect matching (gray) on the
end points. Because of the fixed joints,
we can charge the turn costs to the edge
weights.

Figure 6.9.: The orange and the green
atomic strips represent the turn equally
well. Only the assignment of the turn
costs to the weight of the matching edges
changes. Also, all atomic strips in be-
tween are equally good.

the previous step to predict the corresponding orientation and make the
costs independent again.

We can imagine this procedure as replacing every waypoint by an epsilon-
length segment, as in Figure 6.7. Computing a minimum-weight perfect
matching on the endpoints, as in Figure 6.8, yields the optimal cycle cover
that includes all these segments. The necessary turns at the joints are fixed
for every connecting edge, and can therefore be accounted for in the edge
weights together with the distance. We are calling these epsilon-length
segments atomic strips. The possibility of skipping a waypoint can be
implemented by adding an edge between the two endpoints of its atomic
strip with the weight of the missed coverage.

The orientations of the atomic strips are of fundamental importance: If
we guess them correctly, the minimum-weight perfect matching actually
corresponds to an optimal cycle cover on the waypoints. If we guess
the orientation of an atomic strip badly, the minimum-weight perfect
matching may perform expensive turns to integrate it.

Luckily, the exact orientation is less important if we make turns at a
waypoint, as the range of optimal orientations increases with the turn
angle, as shown in Figure 6.9. For a U-turn, every orientation is optimal.
The straighter a passage, the more important a good orientation becomes;
but often these cases are easy to guess from the fractional solution, which
is why this approach works so well in Chapter 5.

This observation allows us to limit the orientations to the orientations of
incident edges, i.e., neighbors. In the following, we represent the available
orientations for the atomic strip of a waypoint 𝑝 ∈ 𝑃 by the adjacent
waypoints 𝑁(𝑝). If the atomic strip of 𝑝 has the orientation 𝑛 ∈ 𝑁(𝑝),
one of its endpoints heads at 𝑛.

A waypoint may need to be crossed multiple times, as we are limited to
passages within the grid 𝐺 = (𝑃, 𝐸). This can easily be implemented by
transitive edges, i.e., two successive edges 𝑢𝑣 and 𝑣𝑤 ∈ 𝐸 automatically
create an edge 𝑢𝑤 with the combined costs. However, we learned in
Chapter 5 that introducing optional atomic strips and only allowing
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Neutralize atomic strip

Figure 6.10.: The waypoints 𝑝 and 𝑝′

each have two horizontal and two verti-
cal atomic strips. The tour induced by a
matching (blue) only uses one atomic
strip of each, and skips the other by
edges connecting both endpoints. These
edges are usually zero-weight, except
for one carefully-selected one that has
the weight of the opportunity loss val(𝑝)
resp. val(𝑝′).

Figure 6.11.: Optimal tours with turn
costs in a regular triangular grid can
require a linear amount of passages
through some waypoints (red).

direct connections scales much better. An optional atomic strip can be
implemented by simply adding an edge with zero weight between its
endpoints, see Figure 6.10. We call the non-optional atomic strip of a
waypoint the dominant one.

In a square grid as in Chapter 5, we obtain a 4-approximation if we add
an atomic strip for every neighbor and declare the most used one in
the fractional solution as dominant. In a triangular grid, there can be
waypoints that are passed a linear number of times, as in Figure 6.11,
but this is an artificial instance. In our instances, every waypoint is
usually only covered once or twice. As every atomic strip increases the
computational complexity, we limit the number of atomic strips to a
constant 𝑘, and allow for every waypoint 𝑝 ∈ 𝑃 at most one atomic strip
per neighbor 𝑛 ∈ 𝑁(𝑝). The task is to select a subset 𝐴 ⊆ 𝑁(𝑝) with
|𝐴| ≤ 𝑘 as atomic strips and determine the dominant one.

If 𝑘 ≥ |𝑁(𝑝)|, we can simply choose 𝐴 = 𝑁(𝑝). This allows us to use
any passage twice without overhead, because any waypoint passage has
either two neighbors with each having an optimal atomic strip or the
passage is a U-turn. If 𝑘 < |𝑁(𝑣)|, things get more complicated because
we want to optimize three often opposing objectives:

▶ We want to improve the expected case, i.e., the passages with the
highest likelihood should be as cheap as possible.

▶ We want to minimize the cost overhead of the average case, i.e., the
average overhead of any passage.

▶ We want to minimize the worst case, i.e., the cost of the worst
unexpected passage.

Our strategy for this case consists of two phases. First, we select atomic
strips based on edge usages in the fractional solution. This optimizes
the expected case. Second, we fill up the remaining atomic strips by
minimizing the sum of squared overheads of passages not used in the
fractional solution. This optimizes the average and worst case scenarios
(using a higher exponent would shift the focus to the worst case).

The precise strategy is given in Algorithm 2; FS(𝑣, 𝑤) = ∑
𝑢∈𝑁(𝑣) 𝑥𝑢𝑣𝑤

denotes the usage of the edge 𝑣𝑤 ∈ 𝐸 in the fractional solution, and
OH(𝑢𝑣𝑤, 𝐴) denotes the minimal overhead if the passage 𝑢𝑣𝑤 has to use
an atomic strip in 𝐴 ⊆ 𝑁(𝑣). The overhead corresponds to the additional
turn costs needed to accommodate a (possibly misaligned) atomic strip.

If a waypoint 𝑣 ∈ 𝑃 has a coverage value, i.e., val(𝑣) > 0, we still have
to select the dominant strip that can only be skipped at the cost of the
opportunity loss. For very straight passages, there may be no atomic
strip that can be used without overhead (this can also be due to numeric
issues). Thus, we propose a more dynamic approach.

The selection of the dominant strip 𝑎 out of the set 𝐴 is performed by the
usage of the atomic strips, as defined in the following function:

SelectDominant(𝑣, 𝐴) = argmax𝑎∈𝐴
∑

𝑢,𝑤∈𝑁(𝑣)
𝑥𝑢𝑣𝑤 · Usage(𝑢𝑣𝑤, 𝑎)

Let Turn𝑎(𝑢, 𝑣, 𝑤) be the turn angle if the passage 𝑢𝑣𝑤 is forced to use
the atomic strip 𝑎. The usage depends on the turning overhead induced
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Algorithm 2: Atomic strip selection
Input: A waypoint 𝑣 and number 𝑘.
Output: A selection of at most 𝑘 atomic strips, identified by 𝑁(𝑣).

1 𝐴← ∅
2 𝐶0 ← {𝑛 ∈ 𝑁(𝑣) | FS(𝑣, 𝑛) ≥ �}
3 𝐶1 ← 𝑁(𝑣) \ 𝐶0
/* 1. Select by usage in fractional solution. */

4 while 𝐶0 \ 𝐴 ≠ ∅ do

5 𝐴← 𝐴 + argmax𝑣∈𝐶0\𝐴FS(𝑣, 𝑤)
6 if |𝐴| = 𝑘 then return 𝐴

/* 2. Select by overhead. */
7 while 𝐶1 \ 𝐴 ≠ ∅ do

8 𝐴← 𝐴+argmin𝑛∈𝐶1\𝐴
∑
𝑢,𝑤∈𝑁(𝑣)OH(𝑢𝑣𝑤, 𝐴)·OH(𝑢𝑣𝑤, 𝐴 + 𝑛)2

9 if |𝐴| = 𝑘 then return 𝐴

10 return 𝐴

Overhead Usage

0◦ 1.00
1◦ 0.93
2◦ 0.85
5◦ 0.68
10◦ 0.46
30◦ 0.10
50◦ 0.02

Table 6.1.: Usage for� = 0.1 and 𝜙 = 30◦

by forcing a passage to use it. If there is no overhead, the usage is 1.0,
and if there is overhead, the usage drops exponentially.

Usage(𝑢𝑣𝑤, 𝑎) = �(Turn𝑎 (𝑢,𝑣,𝑤)−Turn(𝑢,𝑣,𝑤))/𝜙

� is the usage at an additional turning angle of 𝜙, see Table 6.1 for an
example. Higher values allow more gap, which is necessary if the grid is
not regular. We use � = 0.25 and 𝜙 = 45◦ in the experiments.

An example for different 𝑘 can be seen in Figure 6.12.

Future Work 6.1.

There are many possible parameters for selecting the atomic strips,
and the quality of the selection is essential for the quality of the
following matching. Can we devise a better strategy, e.g., by the usage
of reinforcement learning?

6.4.4. Step 4: Matching

We are left with a weighted graph on the endpoints of the atomic strips,
and we want to compute a minimal matching. There are edges between
any endpoints of atomic strips belonging to neighbored waypoints in
the grid. The weight corresponds to the touring costs between the
two waypoints, with the corresponding orientation at the endpoints.
Additionally, each atomic strip has an edge between its two endpoints.
For the dominant atomic strip, the weight corresponds to the opportunity
loss, i.e., the assigned coverage value, when not covering it. For all others,
the cost is zero to allow skipping them without additional costs. Let 𝑘 be
the maximal number of atomic strips at a waypoint, then the number of
vertices and edges in the matching instance is in 𝑂(|𝑃 | · 𝑘2).

We solve the corresponding minimum-weight perfect matching instance
with the Blossom V algorithm of Kolmogorov [128]. The author states
a worst-case complexity of 𝑂(𝑛3𝑚), which would be prohibitive, but in
practice it shows to be extremely fast.



122 6. Generalization to Polygonal Areas

Figure 6.12.: Example of atomic strip
selection for different 𝑘. The atomic strips
are displayed in yellow (optional) and
red (dominant). The grid is displayed in
black and the fractional solution in blue.
First, we select the atomic strips by their
usage in the fractional solution, then by
minimizing the overhead. The dominant
strip is selected purely based on usage.
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Figure 6.13.: The matching of the atomic
strip of Figure 6.7 yields a set of tours. In
this case, a red and a blue cycle. It can
also directly decide not to cover some
waypoints, but in this case the coverage
values are very high.

Connecting the atomic strips via the matched endpoints yields a set of
cycles, see Figure 6.13, that we can connect in the next step. Contrary to the
previous steps, there are not any direct options for quality improvements.
Only the runtime can be improved by further engineering the matching
algorithm or further simplifying the graph. Because we are focusing on
solution quality, we will not do further engineering of this step, even
though it is computationally the most complex and limiting step.

Future Work 6.2.

Currently, we fully connect the atomic strips of two adjacent waypoints.
This results in Θ(𝑘2)matching edges for any edge in the underlying
grid, with 𝑘 being the number of atomic strips per waypoint. Many
of these matching edges represent expensive turns, and are unlikely
to be used or even highly redundant. For example, a U-turn can use
any atomic-strip with the same overhead. Can we reduce the number
of matching edges to improve the runtime while maintaining the
solution quality?

6.4.5. Step 5: Local Optimization

Before we continue to connect the cycles to a single tour, we can optimize
the cycle cover. For this, we select a small but expensive part of the
solution and compute a (nearly) optimal solution via mixed integer
programming. This can be repeated multiple times until a satisfying
solution is obtained, as shown in Figure 6.14. Note that we are able to
solve instances with 1000 vertices in regular square grids to optimality,
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as described in [5, 19, 27]. Also, for irregular grids, small instances with
less than 100 vertices can usually be solved within seconds. We denote
the desired number of vertices for local optimization by 𝑡.

We select the expensive area to be optimized by choosing an expensive
root and selecting the first 𝑡 vertices of a breadth-first-search. The expense
of a waypoint in a solution is denoted as the cost of the passages covering
it, or the corresponding opportunity loss if it is not used. To make the
selection more robust, we also include the expenses of all direct neighbors
by summing them.
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(a) Initial solution.
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(b) Local area selection (15 points).
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(c) After 1 iteration.
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(d) After 5 iterations.

Figure 6.14.: By optimizing local areas
(red) of cycle covers (blue) with mixed
integer programming, we can improve
the initial cycle cover. The solution pro-
vided by the previous approach without
optimizations is shown in Figure 6.14a.
We then select an expensive area (Fig-
ure 6.14b) and optimize it to near opti-
mality, resulting in (Figure 6.14c). After
five such iterations, we end with a visi-
bly improved solution (Figure 6.14d). By
chance, the optimized solution is even
connected.

By simply replacing the fractional variables with integral variables, the
linear program in Section 6.4.2 (Fractional Solution) on page 117 yields a
corresponding MIP. In this MIP we fix all variables of the given solution
except the variables corresponding to the 𝑡 + 1 selected waypoints. Of
course, we do not need to include the fixed waypoints in this MIP at all
but only need to place the corresponding constants into Equation 6.6.
This ensures that the local solution remains consistent with the fixed
exterior solution. After optimizing the local MIP, we replace the part in
the solution and exclude the root and its neighbors to be selected as root
in further iterations. This is necessary because the expensive parts can
already be optimal (within their local area).

A useful property of the MIP is that the optimization process usually is
faster, if our (local) solution is already (nearly) optimal. If we provide
the MIP-solver with the corresponding start solution, it only has to
find a matching lower bound. Using the running time and the actual
improvements, one could improve the selection of the next area, or
dynamically increase it. By choosing disjunct areas, this optimization
approach also allows efficient parallelization. However, we leave such
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Figure 6.15.: Connecting the two cycles
of Figure 6.13 via an edge (red).

Figure 6.16.: Converting the grid (gray)
into a directed edge graph to compute a
shortest path with turn costs inside. The
distance and turn costs are assigned to
the blue arcs.

optimizations to future work, and simply perform 𝑖 iterations for a fixed
area size 𝑡. See Subsection 6.6.2 for an analysis of this approach.

Future Work 6.3.

Due to the matching technique, we can only use turn costs that depend
linearly on the turn angle. The MIP used in this optimization technique
can use any turn cost function. If we approximated a non-linear turn
cost function with a linear one, we could now use the original cost
function (we can also use it for the fractional solution).

▶ Can we compute good coverage paths for tools with non-linear
turn costs?

▶ Can we adapt this optimization technique to efficiently prevent
very sharp turns that are infeasible for some machines?

This also applies for the tour optimization in Subsection 6.4.7.

6.4.6. Step 6: Connecting Cycles

Now, we only need to connect the cycles to form a tour. For adjacent
cycles, this is quite simple and involves only minimal extra costs: simply
go through every edge that connects two cycles and perform a merge via
the least expensive one, see Figure 6.15. A simple optimization would be
to use two parallel edges once, instead of one edge twice, but this is also
done automatically in Subsection 6.4.7.

Things get more complicated if the cycles are farther apart. It is valid to
question if this would be worthwhile. It could be that the connection costs
actually outweigh the touring costs of the corresponding cycles. If the
area covered by the cycle is not valuable enough, we are better off simply
removing the cycle. We see such a scenario in Figure 6.17: We have two
remote valuable areas with separate cycles. However, the valuable area
on the right side does not actually have much value, and we therefore
only connect the two cycles on the left. If we increase the value of the area
on the right, it suddenly becomes advantageous to connect all cycles.

To select any cycles, we first need to know how much each cycle is worth.
We estimate the value of a cycle by the sum of values of its covered
waypoints. If a waypoint occurs in different cycles, only the first cycle gets
its value. This can happen if two cycles cross and cannot be connected due
to turn costs. Because this rarely happens, the estimated cycle values are
reasonably accurate if the coverage values of the waypoints is accurate.

Next, we need to know how expensive it is to connect any two cycles.
This can be achieved with a modified Dĳkstra-algorithm on the edge
graph. Working on the edge graph of the grid allows us to include not
only the distance of the path, but also the turn costs between any two
edges. To make thing simpler, we use a directed version where we also
include the direction through which we pass the edge, as can be seen in
Figure 6.16.

The distance cost of using an edge can now simply be assigned to the
outgoing arc in the edge graph. If we let 𝑘 be the maximum degree
in the grid, then we have at most 𝑂(|𝑃 | · 𝑘) vertices and 𝑂(|𝑃 | · 𝑘2)
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(c) Cycles (value increased).
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(d) Tour (value increased).

Figure 6.17.: If the valuable areas (green)
are more distanced, the cycles (blue)
should only be connected if the value
is high enough in relation to the costs. A
prize-collecting steiner tree is used for
this.

edges in the auxiliary graph. Using Dĳkstra’s algorithm, we can compute
the least expensive path between any two edges (ignoring possibly
collected coverage value) in 𝑂(|𝑃 | · 𝑘2 log |𝑃 |). The costs are symmetric,
so it is optimal in both directions. Still missing are the costs involved
merging a (doubled) path with a cycle. It would be expensive to check all
combinations for edges incident to the two cycles. Instead, we can select
one of the cycles and initialize all incident edges in the Dĳkstra-algorithm
with the final connection costs to it. We now only have to find the least
expensive incident edge to the target circle using the already computed
distances by Dĳkstra’s algorithm. Hence, for every pair of cycles, at most
one execution of Dĳkstra’s algorithm is necessary.

With these two pieces of information, we can compute a prize-collecting
steiner tree (PCST) on the cycles and their connections. The resulting tree
corresponds to the worthwhile cycles and how to connect them. Com-
puting an optimal PCST is NP-hard, but there exists a 2-approximation
by Goemans and Williamson [163]. We use an implementation by Hegde,
Indyk, and Schmidt [164] with a runtime complexity of 𝑂(𝑑 |𝐸 | log |𝑉 |),
where 𝑑 refers to the encoding size of the numbers. A benchmark is
given in [165]. If the corresponding graph is small enough, we compute
an optimal PCST using integer programming. If there are some zero or
negative connection costs, we can directly connect the corresponding
cycles before we compute the PCST. Using a PCST instead of just greedily
connecting cycles potentially also integrates cycles that are not valuable
enough on their own, but they become valuable in combination with
other cycles.

Using the PCST, we now iteratively merge cycles (using the doubled
paths computed using the Dĳkstra-approach) in a depth-first search
starting from an arbitrary cycle in the PCST. Whenever we merge two
cycles, the path creates additional docking points that may be cheaper
than the originally computed connecting paths. However, we do not need
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Figure 6.18.: Linking a (doubled) path
with a cycle exchanges the incident pas-
sage in the cycle (unbroken line) by two
that are half in the cycle and half in the
path (dotted red).

to recompute the whole Dĳkstra-tree, but can simply reduce the costs for
the corresponding edges and let the reduced costs propagate. During
the joining of the cycle with the doubled path, passages are actually
replaced from the cycle, see Figure 6.18. The shortest paths originating
from such removed passages become invalid. As this rarely occurs and
can be detected, recomputation should only be performed if such an
invalid shortest path is used.

Because the connection costs change during merging, it can result in
better tours if we repeat the complete procedure after each merge and do
not merge the complete PCST at once. While the runtime would still be
polynomial, it would nonetheless be relatively expensive. Therefore, we
will not make use of this optimization. The double usages of the involved
paths can be easily optimized in the next step.

6.4.7. Step 7: Local Optimization

After connecting the cycles to form a tour, the connecting parts are often
highly redundant, as can be seen in Figure 6.19. Luckily, we can extend
the local optimization approach of Section 6.4.5 (Local Optimization)
on page 122 to connected tours. The challenge this is to make sure that
the tour remains connected after local optimizations. The used MIP
does not enforce connectivity and may disconnect the tour again. A
naïve approach is to only accept local improvements that preserve the
connectivity and discard all others. This is of course quite restrictive and
we can find a superior solution.

Figure 6.19.: Especially due to the con-
nection approach of subtours, a lot of re-
dundant coverages can be created, which
we aim to minimize.
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(a) Cycles before connecting.
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(b) Tour with redundant parts (red).

Subtour elimination in the MIP is more difficult than for, e.g., the Travel-
ing Salesman Problem: not only are all visitations optional, but two tours
can cross without being connected. Simply enforcing that two edges have
to leave a connected component, therefore, does not yield the desired
result. In [19, 27] we actually have a corresponding MIP. Because we
already start with a tour and know that we have to connect an interior
solution (inside the small area to be optimized) to the fixed exterior
solution, we can devise a simpler separation constraint.

There are two types of subtours: those that are completely within the
area and those that are only partially within the area. We can only get an
infeasible solution with subtours of the second type if the local solution
incorrectly connects the exterior solution. However, both types can be
handled equally.
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Figure 6.20.: Solution of Figure 6.19 opti-
mized with 20 iterations of size 20.

We either want a subtour 𝐶 to dissolve or to become part of the connected
tour. For this, there needs to be a vertex passage of a subtour to be unused,
or a vertex passage leaving the subtour used. We select an arbitrary vertex
passage of the first type and demand that the sum of the second type is
greater than it. Note that this assumes the existence of an external, fixed
solution, and is otherwise not exact.

Let 𝑋𝐴 be the vertex passage variables that are contained in the area 𝐴
and can be modified by the local optimization. This includes all variable
𝑥𝑢𝑣𝑤 with 𝑢, 𝑣, 𝑤 ∈ 𝐴. If 𝑢 or 𝑤 are not in 𝐴, 𝑣𝑢 resp. 𝑣𝑤 must be used
in the solution, i.e., the edge connects the changeable interior solution to
the fixed exterior solution. All other variables are fixed.

Let 𝑋𝐶 be the vertex passage variables that are used by the subtour 𝐶.
Let 𝑋′

𝐶
be the vertex passage variables that share one edge with the

subtour 𝐶 but are not in 𝑋𝐶 . These are the vertex passages that leave the
trajectory of 𝐶. We can now state a constraint that eliminates 𝐶, if it has
been created by an optimization on 𝑋𝐶 .

∑
𝑥∈𝑋′

𝐶
∩𝑋𝐴

𝑥 ≥ 𝑥𝑐 𝑥𝑐 ∈ 𝑋𝐶 ∩ 𝑋𝐴 , 𝐶 is subtour (6.7)

There exist more efficient options for connecting, e.g., more distant
subtours, but this hardly applies for optimizing only small areas. For
the case that the MIP does not yield a connected solution for 𝐴 within a
fixed number of iterations, we leave 𝐴 as it is. Applying this approach
multiple times can significantly improve the solution, as can be seen in
Figure 6.20. The individual steps are shown in Figure 6.21.
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Figure 6.21.: Multiple steps of the tour
optimization. The optimized area and the
changed parts are highlighted in red. In
some steps, no changes are made because
the solution is (locally) optimal in the
area.
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3: The runtime for a fixed instance is rela-
tively deterministic with Gurobi, but the
dynamic subproblems in the individual
solver can differ strongly if the solvers
use, e.g., different grids.

Future Work 6.4.

The area selection is currently relatively simple and does not take into
account the success or failure of previous steps. Can we determine
effective areas for our optimization heuristic more adaptively?

Future Work 6.5.

The redundant vertex passages usually form a tree in which we should
be able to efficiently compute the most expensive redundant path
via dynamic programming. This expensive redundant path could
then be replaced by a shortest path, which possibly also improves the
coverage. The advantage of such an approach is the potential ability
to optimize longer paths for which our local optimization heuristic
would need many iterations. Can we use such an approach especially
to optimize the redundant coverages created by the cycle connection
algorithm?

6.4.8. Default Algorithm

For the following experiments, we use the following settings, if not stated
otherwise:

▶ We perform 50 integralization steps to improve the integrality gap
of the fractional solution.

▶ We select up to 𝑘 = 6 atomic strips per waypoint.
▶ We perform 25 iterations of the cycle cover optimization with an

area of 50 vertices.
▶ We first try to connect cycles greedily if the connection cost is zero

or less. Otherwise, we compute an optimal PCST instead of using
the approximation algorithm, because the corresponding graph is
reasonably small for all instances.

▶ We perform 25 iterations of the tour optimization with an area of
50 vertices. If the resulting solution is not connected, we perform
up to 10 cutting plane iterations.

The selection of the grid is more complicated, and it is dealt with in the
next chapter. Because we only consider the number of iterations, the
runtime can vary greatly. This is intentionally because the runtime of the
LPs, MIPs, etc. vary anyway 3, and a fixed number of iterations improves
the comparability. Otherwise, a solver can be penalized just because a MIP
took longer than for other solvers. For practical applications, dynamic
parameters based on runtime and gradient are often better suited.

6.5. Grids and Meshes

An essential point for the grid-based methods is to choose a good grid.
Choosing an unsuitable grid, or even just the wrong orientation for
it, can drastically reduce the achievable performance as also noted by
Bormann et al. [131]. Especially in the presence of turn costs, orientating
a square grid in 45◦ to a straight boundary will result in many turns,
because all vertices at the boundary will need to make a turn. Even if we
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Figure 6.22.: An example that allows ar-
bitrary high turn costs for an unsuitable
alignment. The upper image shows the
area to be covered in green. The middle
image shows a well-aligned grid, and
the lower image an unsuitable grid that
requires many turns. The blue area is the
covered area, and the black lines show a
tour computed by the algorithm.

Figure 6.23.: With a distance of 2𝑟, the
middle of a square is not fully covered
(red). However, we minimize turns such
that these scenarios are also minimized.
If these scenarios happen, they can be
fixed with reasonably small costs by mov-
ing the turning points slightly to the in-
side. Depending on how the subtours are
connected, changing the connections can
also be useful to obtain smaller turns.

would be able to compute an optimal tour for this grid, the gap to the
optimal solution independent of the grid can be nearly arbitrarily large,
see Figure 6.22.

Choosing a good grid, hence, is as important as finding a good solution
within this grid.

In this section, we focus purely on how to convert the polygonal instance
into a graph-based instance. The performance of solving the graph-based
instances with our approach is considered in the next section. The reason
for separating these two parts is that this section can be applied to all grid-
based coverage path planning algorithms. While we use our algorithmic
approach for evaluation, most observations can be transferred to general
coverage path optimizations. More specifically, we evaluate the following
questions:

▶ How well do regular square and triangular grids perform in terms
of touring costs and coverage?

▶ What is the optimal edge length in terms of touring costs and
coverage?

▶ How can we create good triangular and quadrilateral meshes to
approximate the area?

▶ How do regular grids and meshes perform for full coverage and
partial coverage?

We start with regular grids, as many algorithms only support regular
grids, and then continue to irregular grids, i.e., meshes.

6.5.1. Regular Grids

Before we go to the lawless meshes, let us take a look at regular grids.

The most common grid is the square grid, which essentially partitions
the area into small squares. There are two options for the edge lengths,
i.e., the distance between two adjacent vertices, for a circular tool with
radius 𝑟: 2𝑟 or

√
2𝑟. The first option reflects the optimal distances between

two parallel trajectories, while the second option already provides a full
coverage by simply visiting all vertices. In case of turns, a length of 2𝑟
will leave out a portion of the area, as can be seen in Figure 6.23.

Luckily, when minimizing turns, these cases are also minimized but
not completely eliminated. The remaining cases can be fixed by slightly
moving the waypoints, as shown to the right, but we leave this technique
to future work. You can find an application of this technique for coverage
without turn costs or constraints in the master’s thesis of Perk [166].

Another common grid is the triangular grid. These are also known as
hexagonal grids, because the dual graph consists of hexagons but the
graph itself consists of triangles. Here, every vertex has six neighbors,
which makes its optimization more challenging but also allows more
complex turns. For achieving a full coverage by only visiting the vertices,
we need a distance of 3√

3
𝑟 to reach the center of each triangle. If we want

two parallel trajectories to be perfectly apart, we need a distance of 4√
3
𝑟.

In this case, we again can lose coverage at turns, which we may need to
fix.
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Figure 6.24.: Examples of the used (full-
coverage) instances.

Future Work 6.6.

What are the costs of closing the gaps in the coverage left by turns by
slightly modifying the path like in Figure 6.23? Can we find a good
strategy for triangular grids and even general meshes?

For square and triangular grids, we denote the denser version that covers
the interior area at the vertices as point-based. The other version, which
can miss area at turns, but covers everything between two parallel lines,
as line-based. This results in four regular grids: point-based square grids,
line-based square grids, point-based triangular grids, and line-based triangular
grids. Examples with covered area from the vertices and tours can be seen
in Figure 6.25. In those, we can also see that the greatest loss of coverage
happens at the boundary. The point-based grids have a small advantage
here because they can place more points due to their finer resolution. An
easy solution to increase the coverage is to simply sweep once along the
boundary, but this can be expensive for curvy boundaries. We will look
into other solutions with irregular grids later.

For comparing the different grids, we focus on polygons that can be
reasonably well covered, i.e., that do not have narrow corners. We do
not consider (integral) orthogonal instances, inspired by simple rooms,
as these can clearly be converted to a square grid and pose no serious
challenge. Instead, we create instances that are in the shape of more
complicated architecture with many non-parallel lines. Additionally,
we add obstacles for some instances. The instances are generated by
merging multiple distorted rectangles and adding some holes with the
same procedure. During this process, only steps that do not lead to
narrow corners, bottlenecks, or even disconnection are chosen. By using
a set of different random parameters for repetitions, sizes, and distortion
strength, we generated a set of 200 instances. Examples of these instances
can be seen in Figure 6.24. The weight for the turn costs is 1.0, 5.0, 50.0
(measured in radian), and the tool-radius is uniformly set to 1.0. For
simplicity, we focus on full coverage and only compare the touring costs
and the coverage (aiming for 100 %). Partial coverage instances have
many more parameters and are more difficult to compare. We can spare
ourselves this complexity until Section 6.5.3 (Comparison) on page 138.

Because an unsuitable alignment can make most grids very expensive,
we try 20 random alignments of each grid, plus one which we rotate such
that the sum of the minimal passage costs per vertex are minimal. Of
these, we choose the alignment with the minimal touring costs.

Let us first take a look into the touring costs on each of the grids. Of course,
they can differ for different algorithms, but it still gives a good indication
of the quality of the grid. For comparing the touring costs of the different
instances and solutions, we need to normalize the objectives. This is
done by putting the objective in relation to the best of the corresponding
instances. A value of 50 % means that the tour is 50 % more expensive
than the least expensive solution. The plots in Figure 6.27 show that the
line-based grids result in the least expensive tours by a significant margin
of over 30 %. The triangular grid has a small advantage of less than ∼ 7 %
over the square grid. The point-based square grid performs worst and is
on average 50 % more expensive than the line-based triangular grid. The
results are relatively stable also for larger instances. When comparing



6.5. Grids and Meshes 131

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

0 10 20 30 40

5

10

15

20

25

30

35

Figure 6.25.: Square and triangular grids
with point-based (denser) and line-based
(sparser) distances. The blue areas on the
left indicate the covered area from the
vertices of the grid. The blue areas on
the right indicate the covered area of
a corresponding tour (blue trajectory).
While the line-based grids do have an
insufficient coverage from the vertices
alone, the tour only leaves few gaps at
turns but is much shorter. The white
area enclosed by the dashed boundary
describes the feasible tool positions.
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Figure 6.26.: The covered area of the
various grid types. Point-based instances
only have a small advantage.

based on the turn cost weights, the triangular grids are very stable, while
the square grids become slightly worse for higher turn costs. This can be
explained by the reduced turning abilities (only having 90◦ and 180◦) of
the square grid.

Tours on line-based grids are, thus, less expensive than point-based grids,
but how much does the coverage suffer? If the coverage is too reduced, the
lower touring costs are of little comfort. Fortunately, the data in Figure 6.26
shows that the point-based triangular grid only covers on average less
than 4.2 % more than the line-based triangular grid. Considering also
that the point-based grids miss a few percent of the coverage even for
the larger instances, this is sufficient for many applications. The missed
coverage that is especially high for smaller instances can be primarily
attributed to the boundary. For larger instances, the boundary ratio gets
smaller and, thus, the coverage gets better for all grids. In the end, we
can decide between a 4.2 % higher coverage using point-based grids, or a
∼ 25 % less expensive tour.

We selected the best alignment out of 20 random alignments and one
optimized alignment, which is, of course, a deceptive selection. As
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Figure 6.27.: Touring costs for the different regular grids. To counter unsuitable alignments, only the best alignment is used. The value
shows how many percent the touring costs are on average higher than the least expensive tour among the solutions for the corresponding
instance. Line-based grids yield clearly less expensive tours, and this effect is stable also for larger instances. The triangular grid only has
a small advantage over the square grid of less than 7 %. The right plot (b) shows that square grids become worse for higher turn costs.
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Figure 6.28.: Average touring costs for
the random alignment compared to the
best solution.

optimizing a tour in a grid takes some time, simply trying many random
alignments is not very efficient. The natural question that comes to mind
is, how well the average random alignment performs. This question can
be answered by the plot in Figure 6.28: for some instances not very well.

The higher the weight of the turn costs, the worse is the average alignment.
While for many instances, the random alignments of the line-based
triangular grids are still reasonably good, there is a high deviation with
many outliers. For the square grids, the random alignment is most of the
time unsuitably aligned, implying that it needs a more careful alignment
than triangular grids.

Examples for good, bad, and median alignments can be seen in Figure 6.29.
The selection only considers the touring costs. The concrete instance has
a high turn cost weight of 50, which leads to the high redundancy for the
worse alignments, as the tour tries to only make turns at corner points
where it has to make turns anyway.

For the experiments in the following sections, regular grids will be
line-based triangular grids oriented by our heuristic. This heuristic, as
also explained above, rotates the grid such that the sum of minimal
passing costs for all vertices is minimal. The idea behind this is that we
minimize the number of ‘staircase’-boundaries that can be observed in
the bad alignments in Figure 6.29. This heuristic performs reasonably
well, and is on average only 2.7 % more expensive than the best grid in the
previous experiment. In comparison, the best of 20 random grids was only
0.6 % more expensive, still showing some room for improvement for our
heuristic. For the other grid types, the best of 20 random grids was also
slightly better than our heuristic but only minimally (e.g., 10 % vs. 9.2 %
for line-based square grids.). Overall, the heuristic works reasonably well
and is much faster than computing the solution on 20 random alignments
and returning the best solution.

Future Work 6.7.

One shortcoming of regular grids is that they often miss some area at
the boundaries.
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Figure 6.29.: Examples for tours on the four grid types with different alignments. In the first column, the best alignment is shown. In the
middle, an alignment that yielded an average tour; and on the right, the worst alignment for the grid type on this instance. The high
weight on the turn costs produces lots of redundant straight coverages if the boundary is badly aligned to the grid.
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Figure 6.30.: A quadrilateral mesh that is
sensitive to the close points on the bound-
ary and reacts with a very dense grid in
these areas. Generated with gmsh [169]
using the Frontal-Delaunay for Quads al-
gorithm with recombination.

▶ Can we mix the regular grid with a boundary mesh to improve
the coverage at the margins while keeping the additional touring
costs low?

▶ Can we use our algorithm to improve the coverage by putting a
grid on the missed areas and merging the solution with a given
tour?

This could allow us to use a highly optimized algorithm for regular
(square) grids, as in the previous chapter, and only use our more
generic algorithm for the difficult parts.

6.5.2. Meshes

We have seen how to approximate a polygonal area using a square or
triangular grid. These regular grids are much easier to work with and
are therefore very common for coverage path planning. However, the
approximation can be very crude, not only missing large parts of the
boundary but also being badly aligned to it. Luckily, we are not the only
ones with the desire to approximate an area by a grid-like structure, and
we can make use of the many results in the field of mesh generation.
In this section, we consider the use of meshes instead of regular grid
graphs.

The field of mesh generation (also known as grid generation, meshing,
or gridding) considers the partition of a surface or geometric object
into simpler elements, such as triangles or quadrilaterals (or three-
dimensional counterparts). This is a fundamental task in computer
graphics, physics simulation, geography, and cartography to deal with
the more complex objects. The concrete specifications of a good mesh
differ for some tasks, but import properties often are:

▶ Angles should not be too small or too wide. A primary motivation
for this is due to numerical issues.

▶ The mesh should have a low complexity, i.e., minimize the number
of introduced vertices and edges.

▶ The mesh should be as regular as possible, i.e., low variance in size
and shape. Most algorithms allow the user to specify a desired or
maximal edge length.

To find out more about the general subject of mesh generation, you can
take a look into the surveys [167, 168] that are part of Computational
Geometry books.

Many mesh generators are very sensitive to close points on the boundary
and react by placing equally close points that result in a high density in
this area, see Figure 6.30.

This high density is, of course, bad for coverage path planning and yields
tours with much redundant coverage. Close points on the boundary
are frequently created by concave corners in the room, around which a
circular robot has to make a circular turn, approximated by polygon with
many segments. There are two steps we should perform, as shown in
Figure 6.31: First, we can simplify the polygon and remove close points,
e.g., by the usage of the Douglas-Peucker algorithm [170]. Because the
connecting lines at the boundary can now intersect the unreachable
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(d) Shrinking.

Figure 6.31.: Concave corners in the area
result in circular curves, under the as-
sumption of a circular robot. Approx-
imating such a curve results in many
close boundary points that are problem-
atic for many mesh generation meth-
ods. To circumvent this problem, we
should simplify the resulting boundary
by using, e.g., the Douglas-Peucker al-
gorithm [170]. Because this can result
in intersecting the boundary, the points
should be moved slightly inwards. Addi-
tionally, we can work on a shrank bound-
ary polygon instead of the feasible area
(which potentially leaves a small part of
the area uncovered).
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(b) With smoothing.

Figure 6.32.: Many mesh generators only
yield good meshes after smoothing.

boundary area, we have to move the points slightly inwards. Second, we
can simply shrink the boundary by the robot radius, instead of computing
the feasible area by a Minkowski sum. The resulting coverage path may
miss some small area at this corner, but the underlying mesh allows a
much better tour. We still need to perform a simplification for complicated
boundary parts not created by curve approximations.

One does not need smooth meshes for all applications, and therefore
many mesh generators only yield very rough grids out of the box. In
combination with smoothing and optimization methods, these generators
can still provide us with smooth meshes, see Figure 6.32.

The classical algorithm of Du et al. [171] tries to achieve a centroidal
Voronoi tessellation (CVT) by moving the points to the centroid of their
Voronoi-cells (Lloyd’s method [172]). Instead of the Voronoi diagram,
one can also work on the dual Delaunay graph, as proposed by Chen and
Holst [173]. The optimesh-library [174] implements these algorithms as well
as some variants. The corresponding GitHub-page (https://github.
com/nschloe/optimesh) gives a great overview with animations and
also some experimental analyzes. Based on this experimental analysis,
verified on some instances, we use the implemented CVT-variant cvt-full
for all triangular meshes with a tolerance of 1×10−5 and 1000 iterations.

To compare all mesh generators is beyond the scope of this thesis,
therefore we focus on a small selection of seven algorithms that seemed
promising based on documentation and samples:

▶ The MeshAdapt (ΔMA), Frontal-Delaunay (ΔFD), Frontal-Delaunay
for Quads (ΔFDQ), and Packing of Parallelograms (ΔPP) methods of
gmsh [169] for triangular meshes.

https://github.com/nschloe/optimesh
https://github.com/nschloe/optimesh
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(b) Fixed with workaround.
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(c) Resulting tour.

Figure 6.33.: The meshing algorithms of gmsh often have problems with holes in the polygon (at least using the pygmsh interface [177]).
The boundary of the hole and the area surrounding it does not get populated enough. This can be fixed by enforcing fixed points on the
hole boundary by replacing long segments with shorter ones. Using this fix, we can compute a good tour despite some artifacts in the
mesh. This example uses Packing of Parallelograms with recombination.

▶ The Frontal-Delaunay for Quads (□FDQ), and Packing of Parallelograms
(□PP) methods with recombination of gmsh [169] for quadrilateral
meshes.

▶ The dmsh-algorithm [175] that is inspired by distmesh [176].

To apply the same conditions to all algorithms, we use the same polygon
shrinking and simplification for all mesh generators, even if they can
handle complex, curved boundaries reasonably well, such as dmsh.

The algorithms of gmsh often have problems with holes, see Figure 6.33.
To fix this problem, we replace long segments in holes with shorter ones
that approximate the desired edge length. If 𝑝0𝑝1 is a long segment and
𝑑 is the desired edge length with 𝑑 < | |𝑝0 − 𝑝1 | |, we replace 𝑝0𝑝1 with
≈ | |𝑝0−𝑝1 | |/𝑑 + 1 equal sub-segments.

We compare the meshes on the same full coverage instances as the regular
grids (Figure 6.24). The focus on full coverage allows us to focus more
attention onto the coverage quality and the density of the meshes. The
plots in Figure 6.34 show the average touring costs and coverage of
the different meshes. The touring cost is measured in how much more
expensive a tour is compared to the least expensive tour we found for
this instance. A value of 20 % would indicate that the mesh yields tours
that are on average 20 % more expensive than the least expensive tour.
The coverage is measured regarding the whole area (note that not all of
the area is always reachable). A value of, e.g., 95 % would indicate that
the mesh yields tours that cover on average 95 % of the whole area.

Area is left uncovered not only due to turns and boundaries (as for regular
grids) but also because the meshes do not always match the desired
distances and can be too sparse in some areas. This especially happens
for dmsh and Packing of Parallelograms, thus, we also reduced their mesh
size by 90 % and 95 % to increase the coverage for these cases. dmsh failed
to create a grid in 5 of the 200 instances because the internal geometric
routines threw exceptions, likely due to numerical issues. These results
are therefore ignored in analysis. One additional instance resulted in
some disconnected areas after the polygon processing and is likewise
ignored for all meshes.
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Figure 6.34.: Cost and coverage of tours in various meshes. The □ and Δ indicate quadrilateral resp. triangular meshes. We can see low
costs for dmsh and triangular Packing of Parallelograms, and a good coverage for the Frontal-Delaunay.

Mesh Runtime (s)

□FDQ 129.7
□PP 89.5
ΔFD 137.6
ΔFDQ 113.1
ΔMA 120.7
ΔPP 94.1
ΔPP(90%) 127.4
ΔPP(95%) 106.6
Δdmsh 114.6
Δdmsh(90%) 146.2
Δdmsh(95%) 123.3

Table 6.2.: Mean runtime with different
meshes.

The dmsh and Packing of Parallelograms-algorithms yield the least expensive
tours on average, with dmsh having an advantage for higher turn cost
ratios. However, when taking a closer look into the data, most meshes
can achieve good grids for specific instances. For example, relatively
rectangular instances work very well with the quadrilateral mesh of
Packing of Parallelograms. The coverage quality is nearly inverse to the
touring costs. The triangular Frontal-Delaunay mesh performs best in
coverage, and is on average around 25 % more expensive than the least
expensive tour (that potentially has a lower coverage). Therefore, reducing
the desired edge length for dmsh and Packing of Parallelograms results in
better coverage at a small cost increase.

The mean runtime, as shown in Table 6.2, for some meshes can differ
quite a lot with a mean runtime of 146.2 s for Δdmsh(90%) and only
89.5 s for □PP. Interestingly, the quadrilateral meshes are not necessarily
faster despite much smaller auxiliary graphs. This is likely due to the
overhead induced by inefficient implementations of auxiliary steps, while
the already optimized steps of the linear program and the matching
algorithm are expected to be faster. Meshes created by dmsh are relatively
slow but, contrary to the gmsh-algorithms, it is written in pure Python
and, thus, not optimized for runtime. Otherwise, the triangular Packing
of Parallelograms meshes are relatively fast. Note that the runtime refers to
the whole solution process and not just the grid generation. The square
grids are usually generated within one second and for the triangular
grids, the optimization process of optimesh (in Python with NumPy and
SciPy) can take up to a few seconds.

When looking onto which instances have been solved well on which mesh
in Figures 6.35 and 6.36, no clear pattern is visible. The only observations
that can be made are that MeshAdapt performs well on instances with
many or larger holes, and the Frontal-Delaunay seems only to perform
well on simpler instances. In the next sections, we will use dmsh with
a 95 % point distance. In case of numerical issues, we will fall back on
Packing of Parallelograms, also with 95 % point distance. The coverage of
these meshes is on average sufficiently high with 96.9 % resp. 96.3 %.
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Figure 6.35.: Only Packing of Parallelograms yielded good quadrilateral meshes, shown here. The trajectory is displayed in black, the
covered area in blue.

Future Work 6.8.

Some mesh generation algorithms, such as distmesh [176], allow speci-
fying local distance functions that allow us to generate meshes with
heterogeneous densities. Can this be used to create meshes for cover-
age path planning that are denser in important areas and lighter in
less important areas?

Future Work 6.9.

The centroidal Voronoi tessellation smoothing [171] improves the triangu-
lar meshes significantly for our application. The quadrilateral meshes
are currently not smoothed at all due to missing support in the
used implementations. Can we smooth and improve the quadrilateral
meshes? You can find more on quadrilateral meshes in [178] and [179].

6.5.3. Comparison

We now compare the performance of meshes and regular grids for partial
and full coverage. For this, we generate instances as before based on the
union of not-too-narrow quadrilaterals. We do the same for valuable and
expensive areas. For the expensive areas, we combine all overlapping
areas into a single area and do not allow overlap. Otherwise, we can easily
get extremely high factors. The valuable areas are not multiplicative but
additive and, thus, do not present this problem. The unsteadiness of
overlapping valuable areas can even make the instances more realistic.
Finding the right set of parameters such that we get well-balanced
instances is difficult. Using purely random parameters, one often ends
up with full coverage because the values are too high, or no coverage
because the touring costs are too high. Thus, a careful fine-tuning of
parameters is necessary to obtain diverse but interesting instances. See
Figure 6.39 for a set of example instances with tours.

We evaluate the quality of the tours based on the objective, as described in
Equation 6.1, which combines touring costs and coverage value. To make
the objectives comparable over all instances, we divide every objective
by the minimal objective known for the corresponding instance. We use
the dmsh-algorithm with 95 % edge length as representative of mesh-
based coverage, and a regular triangular grid with line-based distances
for grid-based coverage. To directly show the advantage of the partial-
coverage technique, we also compare the approaches with enforced full
coverage.
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(a) MeshAdapt (Δ)

(b) Frontal-Delaunay (Δ)

(c) Frontal-Delaunay for Quads (Δ)

(d) Packing of Parallelograms (Δ)

(e) dmsh (Δ)

Figure 6.36.: Instances and tours with at least 95 % coverage on which the corresponding mesh performed well (within 5 % of the best).
MeshAdapt performs well on instances with large hole areas, while the two Frontal-Delaunay versions perform primarily well for rather
simple instances. By reducing the edge length in dmsh, we improve the coverage while only slightly increasing the costs. We consider
dmsh with 95 % edge length as our favorite, as it achieves a good performance and a sufficient coverage on average. If a more thorough
coverage is necessary, we recommend simply to reduce the edge length of dmsh.
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Figure 6.37.: Relative objectives for par-
tial coverage computed with meshes and
regular grids. Additionally, we compare
partial with full coverage. The results are
split for different turning cost weights,
with 50 having a higher focus on turns
than the traveled distance. We can see
that the ability of partial coverage has
a significant advantage. The pure tour-
ing costs of the partial-coverage tours on
the mesh as well as the regular grid are
similar, but the coverage on the mesh is
much better.
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In Figure 6.37, we can see that

▶ The partial mesh approach achieves the best objectives by a clear
margin, independent of the weight of the turn costs. A deeper look
into the data shows that the touring costs of the mesh are slightly
worse than of the regular grid, but this method covers much more
valuable area.

▶ The performance of the meshes drops for higher turn costs, while
the performance of the regular grids improves.

▶ The full-coverage tours are much more expensive than the partial-
coverage tours. Using only partial-coverage for the evaluated in-
stances provides a significant advantage. Note that some drastic
outliers have been removed from the plot. They can be explained
by small valuable areas that can be covered by a small tour which is
obviously better than a full-coverage tour. However, many instances
have larger valuable areas, and even the partial tours often cover
much of the area.

30 20 10 0 10 20

10

0

10

Coverage: 89.6%

(a) Mesh

30 20 10 0 10 20

10

0

10

Coverage: 67.0%

(b) Regular Grid

Figure 6.38.: An example for a difficult
instance for which a mesh still achieves
a reasonable coverage, but a regular grid
does not. A regular grid is too rigid to fit
into the narrow passages.

When considering only the touring costs for full coverage, regular grids
show to yield less expensive tours but with a lower coverage, as can
be seen in Figure 6.40. Even when using point-based edge lengths for
the regular grids, the coverage cannot compete with meshes while the
costs are even higher. The significantly worse coverages often appear in
complicated, small instances like in Figure 6.38. A regular grid cannot
fit to the complex and narrow environment while a mesh can. Such
instances also result in much higher touring costs for meshes because
they do not skip the difficult areas. However, the meshes also leave more
area uncovered than in less narrow areas. Because the mesh only tries to
fit an average distance, the density in narrow areas can become too low,
resulting in gaps.

For the further experiments, we focus on meshes because they achieve a
more reliable coverage even for difficult instances.
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Figure 6.39.: Examples of instances and solutions for partial coverage. The trajectories of the tours are shown in blue and computed on a
mesh. The green areas show valuable areas, and the red areas show expensive areas that multiply the touring costs inside. The intensity
of the color indicates the value (a darker color has a higher value). Many solutions are good but show room for improvement, mostly due
to a badly-aligned grid. However, some tours are better than anticipated based on the underlying objective, which is sometimes difficult
to estimate at first glance.
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Figure 6.40.: Meshes often yield slightly
more expensive tours for full coverage,
but also achieve a much better cover-
age. When using point-based (PB) edge
lengths, the regular grid performs worse
for full and partial coverage. The cov-
erage generally increases for larger in-
stances. The outliers are often small and
complicated instances that a regular grid
cannot cover properly but a mesh can.
This results in high touring costs for the
mesh and a low coverage for the regular
grid.
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6.6. Evaluation

Now that we know how to obtain a reasonably good graph representation
of the instance, we evaluate the general performance of the algorithm
and the influence of the optimization parameters. First, we look into the
influence of the integralization optimization and the local optimization.
Afterward, we check how good the solution is on the graph representation.
For evaluating the quality in the polygon instance, independent of the
chosen grid, we do not have any proper bound to compare it to. Instead,
we compare how close the objective values in the graph and in the
polygon are. Finally, we discuss the runtime of the implementation and
possibilities to improve it.

There are three important metrics used in our evaluation:

P-Obj.: Refers to the objective value of the tour in the original polygonal
instance, consisting of touring costs and opportunity loss for missed
area.

G-Obj.: Refers to the objective value of the tour in the discrete graph
representation, consisting of touring costs and the opportunity loss
for missed vertices.

Fractional solution: Refers to the fractional solution on the discrete
graph instance. It is a lower bound for the G-Obj., i.e, on the best
tour we could obtain in the graph instance. It is not a lower bound
for the P-Obj., because it is mesh-dependent and a different mesh
may be able to yield a better solution.

We are interested in two properties:

▶ How good is our G-Obj., i.e., how much above the fractional solution
is it? This shows us how well we solve the graph representation of
the problem.

▶ How well does the G-Obj. approximate the P-Obj., i.e., how much
above the G-Obj. is the P-Obj.? They only differ in the coverage value
because, as we have seen in the previous section, the tour misses
some coverage at turns and some areas are actually unreachable.
For full coverage, P-Obj. and G-Obj. are identical.

To make the experiments more reliable, we expanded the previous
instance set by 300 more instances, resulting in 500 instances with
coverage value. These additional instances are of low- and medium-value
density (coverable value divided by area). The previous 200 instances also
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contain instances with very high value density that effectively enforce a
full coverage.

6.6.1. Integralization

Let us first take a look on how much influence the branch-and-bound-
based optimization of the fractional solution, computed in Section 6.4.2
(Fractional Solution) on page 117, has on the solution quality. The fractional
solution helps us to guess the best passing direction, which induces high
turn costs when guessed wrong. A more integral solution gives us a
clearer picture of how the optimal solution is likely to look, and therefore
helps us make more informed decisions resulting in better solutions.
Note that a completely integral solution would allow us to skip directly
to connecting the cycles, but this is highly unlikely to occur for non-trivial
instances due to the NP-hardness of the problem.

To evaluate the usefulness of this optimization, we compute solutions
with performing 0, 10, 25, 50, 100, and 200 branching steps. We always
work on the leaf with the lowest objective value in the branch-and-bound
tree, as this represents the current lower bound. This implies that the
expected depth of the branch-and-bound tree is logarithmic because
deeper leaves usually have a higher value.

The results are shown in Figure 6.41. In the first plot we can see that the
difference of the G-Obj to the lower bound provided by the fractional
solution decreases. 10 steps already make a visible difference. However,
if we look at the second plot, we notice that the objective value of the
final solution has barely changed. There is some fluctuation because
some decisions in the solution process change, but the result is rather
random and without a clear advantage. The improvement in the first
plot can be understood if we look at the last plot. Here we see that the
fractional solution does indeed improve. The increase of 1 % for 200 steps
may not seem like much, but it closes the optimality gap by around 10 %.
Interestingly, this does not help us to make better decisions or obtain
better solutions, but it only proves that the computed solutions in the
graph are closer to the optimum than indicated by the lower bound. In
conclusion, this optimization indeed improves the fractional solution,
but the unoptimized fractional solution is sufficient to select good atomic
strips. As long as the proved quality factor is not of great importance, we
can skip this optimization.

6.6.2. Local Optimization

The second optimization relaxes small areas of the solutions and recom-
putes the optimal solutions within these small areas using mixed integer
programming. This is performed for cycle covers in Section 6.4.5 (Local
Optimization) on page 122 and tours in Section 6.4.7 (Local Optimization)
on page 126. There are two important parameters for this optimization:
the number of iterations and the size of the relaxed area. If the area
equals the full instance, we directly compute an optimal solution, but
this is usually too expensive. Only small instances with less than ∼ 100
vertices can be solved very quickly using the current technology. While
we can solve many instances with 1000 and more vertices, this takes a
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(c) Change of fractional solution.

Figure 6.41.: Analysis of the improvement induced by optimizing the fractional solution via branch and bound steps. We can see that the
gap between the solution and the fractional solution decreases, but the actual objective remains nearly the same. Only the lower bound
improves, but this does not help us find a better solution.

minimum of several minutes. A large relaxed area can be substituted by
more iterations of smaller areas to some degree. The runtime increases
linearly with the number of iterations but exponentially with the size of
the area. However, the NP-hard nature of the problem also implies that
area cannot be fully substituted by iterations.

We again focus only on the graph representation of the instances, i.e.,
G-Obj., because the optimization focuses on the graph and does not know
anything about the real instance. The important questions are:

▶ How much can we improve the solution using this optimization?
▶ Should we focus on optimizing the cycle covers or the tours? (While

the tours are the final result, the cycle covers are less expensive to
optimize.)

▶ How much influence do the number of iterations and the size of
the area have?

To answer these questions, we computed solutions that performed a
local optimization on either cycle cover or tour with 0, 10, 25, 50, 100
and 200 iterations and an area of 50 vertices. Additionally, we computed
solutions that performed 50 iterations of the local optimization on either
cycle cover or tour, but with a varying area of 0, 10, 25, 50, 75 and 100
vertices.

The results in Figure 6.42a show that the optimizations with an area
size of 50 vertices yield a visible improvement for partial coverage in
both steps. 10 iterations on the cycle cover already reduce the optimality
gap (in comparison to the lower bound) by around 10 %. The further
iterations lose effectiveness, as can be expected because we prioritize
the expensive areas, but an improvement remains visible. While the
optimization is successful on cycle covers, it is even more impressive on
tours. Here, the first 10 iterations lower the optimality gap by more than
20 %. The further iterations also remain stronger than for cycle cover,
but their improvements still decline quickly. This implies that the cycle
covers are already nearly optimal, but the connection of the cycles to a
tour is not very efficient. The local optimization on tours can easily find
(locally) suboptimal parts in the connected solution and improve them
visibly.
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(a) Iterations.
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(b) Optimization area.

Figure 6.42.: Influence of the number
of iterations and the optimization area
for the local optimization depending on
whether it is applied on cycle covers or
tours. 10 % means that the objective in the
graph-based instance is 10 % higher than
the fractional solution (a lower bound on
the achievable tour in this graph). Opti-
mizing on tours is much more effective
and few iterations and small optimiza-
tion areas already have a visible effect.
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Figure 6.43.: Influence of the number of
iterations for full coverage. The differ-
ence between performing the local opti-
mization on cycle covers or tours is much
smaller than for partial coverage.

The results in Figure 6.42b for varying area are surprisingly very similar:
Doubling the area has a similar effect as quadrupling the iterations. One
difference is that for optimizing cycle covers, the larger areas are more
important than for tours. Optimizing only small areas with 10 vertices
barely improves the solution. For tours, on the other hand, such small
areas can already make a significant difference. This is very useful to
know because optimizing 10 vertices is extremely fast and could still
be done by brute-force. Thus, we can do many iterations with such
small areas in a short time. Larger areas still have their advantage, and
50 iterations of size 100 are roughly as effective as 200 iterations of size
50.

The runtime differences for the number of iterations and the size of
the area can be seen in Figure 6.44. Surprisingly, the runtime for larger
areas looks nearly linear (caveat: the x-axis for iterations is exponential,
but it is almost linear for area). However, this data should be used
with caution because it is highly skewed. First of all, experiments were
run in parallel on the same workstation, leading to a high variance.
Second, the implementation is only optimized for quality but not for
runtime. The connectivity detection, necessary to make sure that we
did not accidentally disconnect the tour and have to insert constraints,
is especially inefficient. Instead of only analyzing the changed part, it
always checks the whole solution with a procedure written in pure
Python. This gives the tour variant a significant overhead which could
be eliminated. The tour variant will still remain slower because the
solution frequently gets disconnected and needs to be reconnected using
additional constraints. These constraints become less efficient for larger
areas because the solution develops more options to evade it. For larger
optimization areas, additional constraints should be developed (compare
with [27]).

For partial coverage, where the intermediate cycle cover can be very
dispersed and difficult to connect, the optimization yields excellent
results. Now we focus on full coverage: what does it look like when every
vertex must be visited. The plot in Figure 6.43 shows that, also here, the
tour optimization is more effective than the cycle cover optimization.

Interestingly, the iterations remain stronger than for partial coverage. A
reason for this could be that the tours are on average longer and therefore
have more area requiring optimization. Another explanation could be
that the selection of the area is not as effective as for partial coverage.
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Figure 6.44.: Runtime for more iterations
or larger areas in the local optimization.
Shown as the mean runtime in seconds
over all 500 instances. Note that the con-
nectivity detection necessary for tours
uses only a naïve implementation that
takes a significant portion of the runtime
for tours; this could be improved signifi-
cantly by focusing only on the changes.
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(b) Optimization area.
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Figure 6.45.: Optimality gap (compared
to fractional solution as lower bound) on
graph instance over area size. It shows
that the optimality gap increases for
larger instances, and that lower weights
on turn costs result in better solutions.

Note that the bars in the plot decline linearly, but the iteration steps are
doubled, implying an exponential decline.

Future Work 6.10.

Can we use the fact that small areas as well as a few iterations on
larger areas already yield a significant improvement? We could first
perform many fast iterations on small areas and then some slower
iterations on larger areas. Alternatively, we can first try to optimize
an expensive part by a small area and only increase the area if the
small area is not sufficient.

6.6.3. Optimality Gap

Let us take a closer look at the solution quality in the graph instances.
The plot in Figure 6.45 shows how the quality of the solution develops
over the size of the instances.

The quality is again measured by the difference of the objective value to
the lower bound provided by the fractional solution. We can see that the
objective is around 10 % to 15 % above the fractional solution, as we have
already seen in the previous experiments. However, we make the new
observation here that the quality slightly degrades for larger instances.
Based on the tool radius of 1.0, the larger (graph) instances have a few
thousand vertices. This degradation could be converging, but the data is
relatively noisy and has too small a range to make any sure assumptions.
The gap is generally smaller for lower turn costs, but this is not surprising
because the turn costs make the problem combinatorially more complex.
This influences at least the quality of the fractional solution, which
provides us with the lower bound. Whether the actual solution has a
larger optimality gap cannot be answered from the solution. Considering
that the lower bound is probably off by a few percent, the overall solution
quality can be called near optimal even for higher weights on turn costs.

6.6.4. Objectives

Until now, we only considered the quality of the solution in the graph
instance for the evaluation of the optimization. However, the graph
instance only approximates the polygon instance, and the objective on
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the original instance can differ from the objective on the graph instance.
The culprit is the differing coverage: we have a lower coverage if we
perform a turn than if we pass straight through a vertex. This problem can
be overcome by using point-based grids instead of line-based grids, as
discussed in Section 6.5 (Grids and Meshes) on page 128; but the touring
cost would be much higher, and we would have highly redundant
coverages for straight passages. Thus, the P-Obj. will generally be worse,
i.e., higher, than the G-Obj. due to unaccounted opportunity loss. In some
cases, we will also have some valuable areas that are actually unreachable
but are still assigned to the value of a vertex as it intersects its Voronoi-cell.
The question is, how close is the P-Obj. to the G-Obj.?

To answer the question, we simply executed the default algorithm on
all the 500 instances and calculated both objectives. We compared them
using the percentage difference between the G-Obj. and the P-Obj., e.g.,
+50 % means that the P-Obj. is 1.5× the G-Obj. While the P-Obj. can
theoretically be lower than the G-Obj. if the value of the vertices has
been underestimated, this is unlikely in our approach and did not occur
in our instances. An important property for the quality of the G-Obj. is
the proportion of the coverage value in the objective. A good indicator
for this is the average value density in the feasible area. Some instances
reached very high value densities by chance, and this resulted in the
coverage value dominating the objective and forcing a full coverage.
These instances are of course not representative.

The plots in Figure 6.46 show that for low densities and high turn costs,
the P-Obj. is only minimally higher than the G-Obj., implying a good
approximation of the polygon instance by the graph instance. This can
be explained by two things: First, higher turn costs reduce the number
of turns, meaning we lose some coverage, and increase the number of
redundant passages. Second, the touring costs are higher due to the
higher turn costs, meaning the relative value density is, thus, lower. For
higher densities, the P-Obj. can be 600 % above the G-Obj. because of
missed coverage. In these cases, the G-Obj. is clearly not approximative.
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Figure 6.46.: Difference between the orig-
inal objective P-Obj. and the actually opti-
mized objective G-Obj. For high weights
on turn costs, the P-Obj. is only a few per-
cent above the G-Obj. For high value den-
sities and low weights on turn costs, the
two objectives can drift apart drastically.
Note that the higher value densities en-
force full coverage as the coverage value
dominates the objective and our solver
is not optimized for 100 % coverage.

To highlight the influence of the proportion of coverage value and
touring costs in the objective, we can plot the difference in relation to the
touring costs divided by the sum of all values in Figure 6.47. We see that
extremes only occur if the touring costs are negligibly small compared to
the coverage value. The instances with higher turn costs remain more
accurate even when normalized in this way. Due to the high coverage
value for some instances, we may wrongly conclude that the previous
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experiments actually primarily compared the coverage quality and not
the touring quality. First, the previous experiments were based on the
G-Obj. which is much more generous regarding coverage. Second, only
the missed coverage is represented by the objective value. These two
points combined, result in a balanced focus on touring costs and coverage
value. This is also visible in Figure 6.48.

Future Work 6.11.

Can we detect the proportion of the coverage value in advance
and automatically place a stronger focus on coverage? The simplest
approach is simply to swap from line-based grids to point-based grids
if the value density is above some threshold that depends on the
touring cost weights. A related but more advanced future work was
mentioned in the previous chapter on Page 138 regarding dynamic
mesh densities.

Figure 6.47.: As in Figure 6.46, but here
we use the touring cost divided by the
sum of values in the polygon instance as
the y-axis. This neutralizes the effect of
the turn cost weight on the relative value
density. The advantage for instances with
higher turn costs remains.
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Figure 6.48.: Examples for instances with
a huge difference between G-Obj. and
P-Obj. The reason is solely in the high
coverage value not because the tour is
bad. These extreme examples also tend
to be very small instances in which the
random instance generator put by chance
many high valued areas.
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6.6.5. Runtime

In the previous chapter, we optimized the underlying algorithm to solve
instances with over 300 000 vertices in regular square grids. In this
chapter, we focused on generalization to make the algorithm applicable
to real-world instances and to improve solution quality. The considered
instances are much smaller and usually only have a few thousand or only
hundred vertices, which can still result in complicated tours as seen in
Figure 6.39. The runtime (a few minutes) of the used implementation,
as shown in Figure 6.49, can be too slow for real-life applications, e.g.,
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Figure 6.49.: Mean runtime over instance
size of the Python-implementation.

4: Less because of the actual arithmetic
operations but more due to numerical
issues within the algorithms themselves.

a robotic vacuum cleaner. However, there are lots of opportunities for
tuning:

▶ The used meshing algorithm dmsh is a slow, pure Python imple-
mentation. The implementations in gmsh are much faster and have
only a slightly worse quality than dmsh.

▶ There are many expensive assertions: generally, checking for feasi-
bility and connectivity takes a lot of time. Using optimized native
data structures and code for these could reduce the runtime visibly
(especially the tour-based optimization).

▶ Computing the connection costs between cycles and connecting
them is time intensive, despite having a runtime of 𝑂(𝑛 log 𝑛).
The many indirections in the look-up tables induced by Python
can easily multiply the runtime by a factor of 100. Native data
structures and code could also greatly decrease the runtime.

Future Work 6.12.

How much can we improve the runtime by replacing the Python-code
by native C++-code? Remember that we were able to optimize regular
square grids with up to 300 000 vertices in the previous chapter, using
essentially the same algorithm.

Due to the generalization, it is unlikely that we can solve as large
instances as in the previous chapter using code-optimizations alone.
The implementation used in the previous chapter was able to use much
faster integer arithmetic 4, and also the instances had very a different
character. To solve larger instances, we have to reduce the runtime of
the Matching algorithm and the linear program. For the matching part,
we already mentioned in the corresponding chapter that we could try
to reduce the number of edges in the auxiliary problem. Most of the
edges are actually not necessary, and additionally, thanks to the primal
dual implementation, we can add edges later without restarting the
algorithm if we notice some important edges are missing. Another more
general approach for both parts is to partition the area and solve much
smaller subproblems. At that point, we only want a cycle cover, meaning
connectivity between the subproblems is not necessary.

Future Work 6.13.

Can we partition very large instances into smaller instances in order
to compute cycle covers faster? This is very similar to our local
optimization but on a larger level. Such an approach would be easy
to parallelize and scale for quite large instances.

This also opens up the following question, which can be much easier
implemented and evaluated:

Future Work 6.14.

How good are the solutions if we do not use the approximation
algorithm to get a first solution, but instead directly use the local
optimization, i.e., only perform Steps 1, 5, 6, and 7? This approach
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has less of a chance to detect the global structure of the instance
and will probably yield worse tours, but has the redeeming factor of
potentially being much faster.

6.7. Conclusion

Throughout this chapter, we first generalized the approximation algo-
rithm of the previous chapter to work on polygonal instances, and we
also introduced some optimizations. Afterward, we discussed how to get
a good graph representation of the polygonal environment using regular
grids and meshes. At the end, we evaluated the algorithm and saw that
we were able to compute solutions that are on average close to optimum
(10 %) on the graph representation. The graph representation, on the
other hand, can be problematic, and the objectives in both representations
can diverge because of missed coverage, but for higher turn costs and
lower value densities, the graph representation is very accurate. Overall,
the approach shows to be very effective when turn costs are important
and missing around 5 % of the coverage is not critical.

There is a lot of potential future work highlighted throughout the chapter,
that can improve the performance on other kinds of instances as well as
improving the runtime. The most critical and difficult part for computing
better solutions is clearly the creation of good graph representations, i.e.,
grids and meshes. Here, significant improvements can still be achieved,
while the runtime remains the primary concern for optimizing the
resulting graph representation.

The approach can also be modified to many problem variants. A common
and more difficult problem variant is the presence of an energy or
time budget. This can be approximated to some degree by scaling the
touring costs when the tour is using too much or little energy, but a
direct optimization is more challenging. Of course, this can take many
iterations and may not even yield a satisfying tour. Alternatively, one can
first compute a regular cycle cover and then select a subset of the cycles
that fit the budget. However, one can also easily imagine an instance
where this approach fails.

Future Work 6.15.

How can we optimize the problem of maximizing the covered value
with a limited touring cost budget? Without turn costs, this equals
the Budget TSP on the graph abstraction. With turn costs, the problem
becomes more difficult and requires new algorithmic ideas.
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In this chapter, we study a trajectory analysis problem we call the
Trajectory Capture Problem (TCP): for a given input set Tof trajecto-
ries in the plane, and an integer 𝑘 ≥ 2, we seek to compute a set of 𝑘
points (“portals”) to maximize the total weight of all subtrajectories of
Tbetween pairs of portals. This problem naturally arises in trajectory
analysis and summarization.

We show that the TCP is NP-hard (even in very special cases), and
we give some first approximation results. Our focus is on attacking
the TCP with practical algorithm engineering approaches, including
integer programming (to solve instances to provable optimality) and
local search methods. We study the integrality gap arising from such
approaches. We then analyze our methods using different classes of
data, including benchmark instances that we generate. Our goal is to
understand the best-performing heuristics, based on both solution
time and solution quality. We demonstrate that we are able to compute
provably optimal solutions for real-world instances.

7.1. Introduction

In recent years, the progress in technical capabilities has resulted in
massive amounts of trajectory data for cars, trucks, trains, aircraft, ships,
people, and animals being collected at increasing rates. This presents
major challenges for storing and evaluating this ever-growing data, as
well as for extracting useful information; this motivates the search for
data structures and algorithms that capture some of the most important
and useful aspects of such trajectories. At the same time, the availability
of large volumes of data makes it possible to consider useful aspects
that were previously unavailable due to the lack of data or algorithmic
evaluation methods, such as collecting useful information along the
traveled trajectories.

One such means of analyzing a set T of trajectories is to determine
“popular pairs” (𝑝1 , 𝑝2) of locations (or location/time pairs) for which
there is a significant “value” of the trajectories Tgoing between those
points. This value can arise from aggregated data between checkpoints,
such as the total passenger-distance or the accumulated total pollution
along the way; it also comes up through the use of tomographic methods
(i.e., determining physical phenomena by measuring aggregated effects
along the path between two sensors), which are highly important in the
context of many other application areas, such as in astrophysics [29].
A limiting factor is usually the need to pick a set of locations of finite
cardinality, i.e, placing a limited number of toll booths, cameras for
average speed measurement, various other types of sensors, or abstract

∗ The content of this chapter was presented at SEA 2020 [6]. Many thanks to the co-authors
Sándor Fekete, Alexander Hill, Tyler Mayer, Joseph Mitchell, Ojas Parekh, and Cynthia
Phillips for the fruitful collaboration.
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collections of focus points for sampling trajectories. For an example,
consider the scenario shown in Figure 7.1, which corresponds to more
than 500 000 data points that arise from the trajectories of over 250 taxi
cabs in San Francisco. Our goal is to identify a small subset of locations
that allow us to capture as much of the movement information, in terms
of weighted distance between checkpoints, as possible.

Figure 7.1.: A set of taxi trajectories after
preprocessing in San Francisco Bay Area.
(Satellite images courtesy of Planet Labs
Inc.)

In this chapter, we study the Trajectory Capturing Problem (TCP), a
generalization of “popular pair” computation: Given a set Tof trajectories
and an integer 𝑘 ≥ 2, determine a set of 𝑘 portals (points) to maximize
the sum of the weights of the inter-portal subtrajectories in T; such
subtrajectories are said to be “captured” by the set of portals. After
establishing that the TCP is NP-hard, and giving some first approximation
bounds, we focus on algorithm engineering methods for attacking the
problem practically.

7.1.1. Overview

We provide results both for algorithmic theory and algorithm engineering
aspects of the Trajectory Capturing Problem.

▶ We prove NP-hardness for the TCP, even for instances with trajecto-
ries consisting of individual axis-parallel segments.

▶ We establish two approximation algorithms. One has approxima-
tion factor 𝐾 if the input trajectory set decomposes into 𝐾 subsets
where within each subset no two segments cross, though they can
overlap, (𝐾 noncrossing subsets). The other has an approximation
factor Δ, the maximum number of input trajectories hit by any
single point.
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▶ We develop an Integer Program (IP) to solve TCP instances to
provable optimality.

▶ We show that, in general, the IP formulation has unbounded inte-
grality gap*. For inputs decomposing into 2 noncrossing subsets
(e.g., arising from axis-parallel segments), we show that the inte-
grality gap is at most 𝑘

⌊𝑘/2⌋ (Theorem 7.4.2).
▶ We develop methods for generating challenging benchmark in-

stances for experimentation. For geometric instances, based on
segment arrangements, this requires care to address geometric
robustness and accuracy.

▶ We compute provably optimal solutions for general instances up to
thousands of candidate capture points.

▶ We give provably optimal solutions for even larger instances, with
up to 7000 possible capture points, for instances based on axis-
parallel segments, where we find the integrality gap to be quite
small.

▶ Using the IP solutions as a reference, we perform a thorough com-
putational study using heuristic algorithms (a greedy algorithm,
iterated local search, simulated annealing, and an evolutionary
algorithm), with various settings, to understand how heuristics
perform on various instances, in terms of time and solution quality.

▶ We demonstrate our methods on real-world instances, including
a provably optimal solution for taxi-cab data on 250 trajectories,
with more than 500 000 individual geographic data points.

Given the broad range of potential applications, scenarios and assump-
tions, we do not claim (or even aim) to provide a final set of methods for
the general problem. Instead, we focus on demonstrating that a number
of modeling and optimization approaches can provide a promising range
of insights and tools for future work from various directions.

7.1.2. Related Work

Related to our problem is the well-studied Geometric Hitting Set Problem
(GHS), in which one seeks a smallest cardinality set of points to hit a given
set of lines, segments, or trajectories in the plane; as a single point suffices
to capture all of a trajectory it lies on, achieving large objective values for
the GHS is easier than for the TCP. The GHS is known to be NP-hard,
hard to approximate (below a threshold), and some natural geometric
cases have constant-factor approximation algorithms; see, e.g., [180], and
the references therein.

There is a vast literature on problems of analyzing, clustering, mining,
and summarizing a set of trajectories. For an extensive survey of trajectory
data mining methods, see Zheng [181] and Zheng and Zhou [182]. Notions
of “flocks” and “meetings” have been formalized and studied algorithmi-
cally [183–186]. Gudmundsson, van Kreveld, and Speckmann [187] define
leadership, convergence, and encounter and provide exact and approximate
algorithms to compute each. Andersson et al. [188] show that several
Leader-Problem (LP) variants (LP-Report-All, LP-max-Length, LP-Max-Size)

* The integrality gap is maxI LP(I)
IP(I) , where I is a TCP instance, IP(I) is the optimal IP

solution value and LP(I) is the optimal solution value to the linear programming (LP)
relaxation.
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are all solvable in polynomial time and provide exact algorithms. Buchin
et al. [189] present a framework to fully categorize trajectory grouping
structures (grouping, merging, splitting, and ending of groups). Other
approaches to trajectory summarization naturally include cluster analysis,
of which there is a large body of related work. Li, Han, and Yang [190]
consider rectilinear trajectories and show how to cluster with bounding
rectangles of a given size. Several approaches (e.g., [191–194]) consider
density-based methods for clustering sub-trajectories. Lee et al. [192]
take it one step further by considering a two-level clustering hierarchy
that first accounts for regional density and then considers lower-level
movement patterns. Li et al. [195] consider a problem (related to [187])
in which they seek to identify all swarms or groups of entities moving
within an arbitrary shaped cluster for a certain, possibly disconnected,
duration of time. Also, Uddin, Ravishankar, and Tsotras [196] consider
finding what they call regions of interest in a trajectory database.

In motivating tomographic applications, the number of checkpoints
is an important constraint in the use of discrete tomography, e.g., in
astrophysics (Korth et al. [29]).

7.2. Preliminaries

We are given a set of trajectories T, each specified by a sequence of points,
e.g., in the Euclidean plane. We seek a set 𝑃 = {𝑝1 , . . . , 𝑝𝑘} of 𝑘 portals,
i.e., selected points that lie on some of the trajectories. While our practical
study focuses on instances in which the trajectories Tare purely spatial,
e.g., given as polygonal chains or line segments in the plane, our methods
apply equally well to more general portals and to trajectories that include
a temporal component and live in space-time. More generally, we are
given a graph G, with length-weighted edges, and a set of paths within
G. We wish to determine a subset of 𝑘 of the nodes of G that maximizes
the sum of the (weighted) lengths of the subpaths (of the input paths)
that link consecutive portals along the input paths.

We seek to compute a 𝑃 that maximizes the total captured weight of
subtrajectories between pairs of portals. For a trajectory 𝜏 ∈ T, if there
are two or more portals of 𝑃 that lie along 𝜏, say {𝑝𝑖1 , . . . , 𝑝𝑖𝑞 } (for
𝑞 ≥ 2), then the subtrajectory, 𝜏𝑝𝑖1 ,𝑝𝑖𝑞 , between 𝑝𝑖1 and 𝑝𝑖𝑞 is captured by
𝑃, and we get credit for its weight 𝑓 (𝜏𝑝𝑖1 ,𝑝𝑖𝑞 ). (For many of our instances,
𝑓 (𝜏𝑝𝑖1 ,𝑝𝑖𝑞 ) corresponds to the Euclidean distances, denoted by |𝜏𝑝𝑖1 ,𝑝𝑖𝑞 |,
but our methods generalize to other types of weights.) Let 𝑓𝑃(𝜏) denote
the captured weight of trajectory 𝜏 by the portal set 𝑃. The Trajectory
Capture Problem (TCP) is then to compute, for given Tand 𝑘, a set of 𝑘
portals 𝑃 = {𝑝1 , . . . , 𝑝𝑘} to maximize ∑𝜏∈T 𝑓𝑃(𝜏).

7.3. Analytical Results

The TCP is NP-hard and hard to approximate for general graphs even
when all trajectories have weight 1. Given a graph, let each edge be a
trajectory. Then an optimal solution to TCP gives the densest 𝑘-node
subgraph. Manurangsi [197] showed that, assuming the exponential time
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hypothesis, there cannot be an 𝑛
1

log log 𝑛𝑐 -approximation algorithm for the
Densest k-Subgraph problem for any constant 𝑐 > 0.

In the following, we give more specific results for a range of geometric
TCP versions.

7.3.1. Complexity

In the one-dimensional setting, the underlying graph G is a path, and
the input trajectories T = {(𝑎1 , 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛)} are a set of subpaths
of G, specified by pairs of integers, 𝑎𝑖 , 𝑏𝑖 . A solution to the TCP then
consists of 𝑘 points, 𝑃 = {𝑝1 , . . . , 𝑝𝑘}, w.l.o.g. indexed in sorted order,
𝑝1 < 𝑝2 < · · · < 𝑝𝑘 .

Theorem 7.3.1 The one-dimensional TCP can be solved exactly in polynomial
time.

Proof. Note that we can split any trajectory at a portal because the portal
would immediately continue the capturing. This splits the instance in
an independent left and right side. Further, only the endpoints 𝐸 =

(𝑎1 , 𝑏1 , 𝑎2 , 𝑏2 , . . .) of the trajectories are relevant positions for the portals.
This allows us to devise a dynamic program: Let 𝑉𝑖(𝑥) denote the
maximum possible length of Tcaptured by 𝑖 portals (𝑝0 , . . . 𝑝𝑖−1) to the
left of 𝑥 with 𝑝𝑖−1 = 𝑥.

𝑉𝑖(𝑥) =
{

0 if 𝑖 = 1
max𝑥′∈𝐸,𝑥′≤𝑥 {𝑉𝑖−1(𝑥′) + |{𝑠 ∈ T | 𝑥′, 𝑥 ∈ 𝑠}| · (𝑥 − 𝑥′)︸                                ︷︷                                ︸

captured by 𝑥′ and 𝑥

} else

We now can compute the optimal solution in𝑂(𝑛2𝑘)by max𝑥∈𝐸 𝑉𝑘(𝑥).

For two-dimensional instances, things get hard as the following two
theorems show.

Theorem 7.3.2 The TCP is NP-hard, even for an input Tof 𝑛 line segments
in the plane.

Proof. The reduction is from the Hitting Lines problem: Decide if there
exists a set of 𝑘 points that hit every one of a given set of 𝑛 lines in the
plane.

Consider an instance, L = {ℓ1 , . . . , ℓ𝑛}, of 𝑛 lines in the plane. Let
𝛿 > 0 be the radius of a disk, 𝐷𝛿, centered at the origin (0, 0), that
is large enough to contain all intersection points (crossing points) in
the arrangement of L; it suffices to select 𝛿 greater than the Euclidean
distance from the origin to any crossing point, ℓ𝑖 ∩ ℓ 𝑗 . Let 𝑅 ≪ 𝛿 and
consider the much larger disk, 𝐷𝑅+𝛿 , centered at the origin; it will suffice
to pick 𝑅 = 2𝑛𝛿. Each line ℓ𝑖 intersects 𝐷𝛿 in a single segment, 𝑠𝑖 , and
intersects the annulus 𝐷𝑅+𝛿 \ 𝐷𝛿 in two segments, 𝑠′

𝑖
and 𝑠′′

𝑖
, with 𝑠′

𝑖
in

the half-space {(𝑥, 𝑦) ∈ ℝ2 : 𝑦 ≤ 0} (and 𝑠′′
𝑖

in the half-space with 𝑦 ≥ 0).
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Figure 7.2.: Reduction from the problem
Hitting Lines.

We consider the instance of TCP with the following 2𝑛 line segments as
input: the 𝑛 segments, 𝑠𝑖 ∪ 𝑠′𝑖 , obtained by concatenating 𝑠𝑖 and 𝑠′

𝑖
, and

the 𝑛 segments 𝜎𝑖 that connect the endpoint of 𝑠′
𝑖

(the one at distance
𝑅 + 𝛿 from the origin) to a point 𝑝, at distance 𝑅′ + 𝑅 ≪ 𝑅 from the
origin; it will suffice to pick 𝑅′ = 2𝑛𝑅. Refer to Figure 7.2.

We claim that there is a hitting set of size 𝑘 for L if and only if it is
possible to capture at least length∑

𝑖(|𝑠′𝑖 | + |𝜎𝑖 |) using a budget of 𝑛+1+ 𝑘
points in the instance of TCP.

First, if there exists a hitting set of size 𝑘 for L, then in the instance of
TCP, we place 𝑘 hit points (within 𝐷𝛿) to hit all of the segments 𝑠𝑖 ∪ 𝑠′𝑖 ,
and place 𝑛 hit points at the endpoints of these 𝑛 segments that lie on
the boundary of 𝐷𝑅+𝛿 , and one point at 𝑝; this suffices to capture at least
length ∑

𝑖(|𝑠′𝑖 | + |𝜎𝑖 |).

For the converse, the only way to capture length at least ∑𝑖(|𝑠′𝑖 | + |𝜎𝑖 |) is
to place hit points at 𝑝, at the 𝑛 points 𝜎𝑖 ∩ 𝑠′𝑖 , and at 𝑘 points within 𝐷𝛿

that hit all 𝑛 of the segments 𝑠′
𝑖
. (Lengths captured within 𝐷𝛿 are very

small compared to the lengths captured outside of 𝐷𝛿.)

The proof of Theorem 7.3.2 uses a construction involving segments of
many orientations whose pairwise intersections may only be single points.
The following shows that the TCP is already NP-hard for segments of two
orientations, provided that two intersecting segments may be collinear,
and three different segments can intersect in a single point.

Theorem 7.3.3 The TCP is NP-hard, even for an input Tof 𝑛 line segments
of at most two orientations in the plane, with any two segments intersecting
in at most a single point (there are no overlapping pairs of segments) but
possible collinearity.

Proof. Without loss of generality, we assume that the two orientations
are horizontal and vertical; i.e., the segments of Tare axis-parallel.

The reduction is from 3-SAT, in which one is to decide if there is a truth
assignment for 𝑛 Boolean variables 𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛 that satisfy a set of 𝑚
clauses in conjunctive normal form. The construction is similar to that
used to show NP-hardness of the hitting set problem on axis-parallel
segments [180], with some key new features. See Figure 7.3 for the overall
construction.

First, we place 𝑚 vertical clause segments, each of length 𝑛𝑚, evenly
spaced at unit distance; these are shown in blue at the top of Figure 7.3.
We also place 2𝑛 vertical variable segments of length 𝑛𝑚 (also shown in
blue) at unit distance to the right and left of the clause segments, such that
their top vertices line up with the bottom vertices of the clause segments;
these variable segments are slightly shifted vertically and horizontally
by Θ(�) for a sufficiently small � (it suffices to set � = Θ(1/𝑚𝑛)).

For each of the 𝑛 variables, we add a set of 2 literal horizontal chains
of (approximately) unit segments (shown in orange in the figure); each
chain consists of 𝑚 + 1 such segments, and two consecutive segments
in the same chain intersect only in their shared endpoint; these are
shown by red and green dots in the figure. Similarly, the first and last



7.3. Analytical Results 159

c1 c2 c3 c4

x1

x2

x3

x4

Figure 7.3.: Overview of the hardness
construction, for the 3SAT instance (𝑥1 ∨
𝑥2∨𝑥3)∧(𝑥1∨𝑥3∨𝑥4)∧(𝑥2∨𝑥3∨𝑥4)∧
(𝑥2 ∨ 𝑥3 ∨ 𝑥4). For an instance with 𝑚
clauses and 𝑛 variables, it consists of 2𝑛+
𝑚 vertical (blue) segments, each of length
𝑛𝑚, and 2𝑛(𝑚 + 1) horizontal (orange)
segments of unit length (up to small mod-
ifications of size𝑂(�)). The red and green
dots indicate points at which different
segments meet. With 4𝑛 + 𝑚 + 𝑛𝑚 por-
tals, a total distance of length at least
𝑛(𝑚+1)+2𝑛2𝑚+𝑛𝑚2−Θ(𝑛𝑚�) can be
captured if and only if the 3SAT instance
has a satisfying truth instance.

endpoint of such chains of horizontal segments lie on the corresponding
left and right vertical variable segments. The vertical distance between
the two chains is Θ(�). For each variable, the lower chain corresponds to
a true assignment (corresponding to green dots), while the upper chain
corresponds to a false assignment of that variable (corresponding to
red dots).

Finally, the lengths of the horizontal segments for a literal are adjusted
by Θ(�), so that precisely the dots corresponding to the literals in a
particular clause are positioned on the vertical segments for that clause.

Now we claim: With 4𝑛 + 𝑚 + 𝑛𝑚 portals, a total distance of length at
least 𝑛(𝑚 + 1) + 2𝑛2𝑚 + 𝑛𝑚2 − 1

2 can be captured, if and only if the 3SAT
instance has a satisfying truth instance.

It is straightforward to see that a satisfying truth assignment induces a
set of 4𝑛 + 𝑚 + 𝑛𝑚 portals that capture a total distance of length at least
𝑛(𝑚 + 1) + 2𝑛2𝑚 + 𝑛𝑚2 − Θ(𝑛𝑚�): Simply pick the upper endpoints of
vertical clause segments and the bottom endpoints of vertical variable
segments, along with all of the endpoints of horizontal literal segments
for the chain corresponding to the truth assignments of a variable. This
captures the full distance of 𝑚 + 1 − Θ(𝑛�) of one horizontal chain of
literal segments for each of the 𝑛 variables, 𝑛𝑚 − Θ(𝑛�) of each of the
2𝑛 vertical variable segments, as well as 𝑛𝑚 − Θ(𝑛�) of each of the 𝑚
vertical clause segments.

For the converse, first observe that any solution satisfying the bound must
capture the full length of all vertical segments, up to a total difference of
at most 1

2 . As a consequence, we can assume that 2𝑛 +𝑚 portals must be
placed at endpoints of the vertical segments, as indicated by the 2𝑛 + 𝑚
blue dots in the figure. Furthermore, each vertical segment must have a
second portal near its other endpoint; without decreasing the value of
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the solution by more than Θ(𝑛�), we can assume that each such portal
is placed on one of the endpoints of a horizontal literal segment. This
captures a total distance of 2𝑛2𝑚 + 𝑛𝑚2 − Θ(𝑛𝑚�) from the vertical
segments.

On the other hand, this leaves at most 2𝑛 + 𝑛𝑚 = 𝑛(𝑚 + 2) (non-blue)
portals to capture a distance of at least 𝑛(𝑚 + 1) − 1

2 from the horizontal
unit-length segments. If we consider the auxiliary graph in which these
portals are represented by vertices, and two vertices are adjacent if
they capture the same horizontal edge, we conclude that this graph
decomposes into a set of paths; furthermore, a path consisting of 𝑝 + 1
vertices and 𝑝 edges captures a distance of at most 𝑝. As a consequence,
there can be at most 𝑛 such paths, otherwise we capture a horizontal
distance of at most 𝑛(𝑚 + 1) − 1. Because the longest possible length
of a path is 𝑚 + 1, which occurs if and only if we pick all endpoints in
a full horizontal literal chain, it follows that we must pick precisely 𝑛
such full chains, with either of their two endpoints on the two vertical
segments for the corresponding variable. As this leaves 2𝑛 portals to be
positioned near the upper endpoints of the 2𝑛 vertical variable segments,
and we need at least one portal on each of the vertical variable segments,
we conclude that for each variable we must pick precisely one literal
chain of endpoints, corresponding to a truth assignment. Finally, the
choice of portals must also pick at least one portal near the bottom end
of each vertical variable segment; this is only possible if the choice of
literal chains produces at least one satisfying literal for each clause. This
concludes the claim.

7.3.2. Approximation Algorithms

Consider first the case in which the set T of input trajectories is the
(disjoint) union of𝐾 subsets of trajectories, T= T1∪T2∪· · ·∪T𝐾 , with each
subset T𝑖 having the following path property: For any connected component
of the intersection graph of T𝑖 , the trajectories in that component are
all subpaths of some path in the union of T𝑖 . This condition holds, for
example, if T is a set of line segments of 𝐾 distinct orientations.

Theorem 7.3.4 The TCP for an input set T= T1 ∪T2 ∪ · · · ∪T𝐾 , with each
subset T𝑖 having the path property, has a polynomial-time 𝐾-approximation
algorithm.

Proof. Within each class T𝑖 , the path property implies that the trajectories
behave like intervals on a line, so our one-dimensional dynamic program-
ming solution applies. Selecting the best solution that uses all 𝑘 points
for one of the T𝑖 gives a polynomial-time algorithm with approximation
ratio 𝐾.

Theorem 7.3.5 The TCP for an input set Tof arbitrarily overlapping/crossing
trajectory paths in the plane having bounded depth Δ (i.e., no point of ℝ2 lies
in more than Δ input trajectories) has a polynomial-time Δ-approximation
algorithm, for any even number, 𝑘, of portals. (If 𝑘 is odd, the approximation
factor is at most Δ(1 + 1

𝑘−1 ).)
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Proof. Consider an optimal set, 𝐻∗, of 𝑘 hit points, capturing total trajec-
tory length 𝐿∗. For each hit point ℎ ∈ 𝐻∗, which lies on 𝛿 ≤ Δ trajectories
of T, we replace ℎ with 𝛿 copies (“clones”) of the point ℎ, with one
clone associated with each of the 𝛿 trajectories that ℎ hits. In total there
are at most 𝑘Δ clones. Consider any trajectory 𝜏 ∈ T, and consider the
clones (copies of hit points) that lie along 𝜏. If there are at least 2 clones
on 𝜏, then the portion of 𝜏 that lies between the extreme clones on 𝜏 is
captured; the length of this portion is at most the length of 𝜏. The 𝑘Δ
clones capture portions of at most ⌊𝑘Δ/2⌋ trajectories, resulting in total
captured length 𝐿∗ ≤ ℓ1 + ℓ2 + · · · + ℓ⌊𝑘Δ/2⌋ , where ℓ𝑖 denotes the length
of the 𝑖th longest trajectory of T (ℓ1 ≥ ℓ2 ≥ ℓ3 ≥ · · · ).

Now consider the simple greedy algorithm that places hit points at the
2 endpoints of the ⌊𝑘/2⌋ longest trajectories of T, using at most 𝑘 total
hit points. This algorithm captures length 𝐿 = ℓ1 + ℓ2 + · · · + ℓ⌊𝑘/2⌋ . The
approximation ratio is at most

𝐿∗

𝐿
≤ ⌊𝑘Δ/2⌋⌊𝑘/2⌋ .

Thus, 𝐿∗𝐿 ≤ Δ for even 𝑘. For odd 𝑘, the denominator is exactly (𝑘 − 1)/2,
while the numerator is either 𝑘Δ/2 (if Δ is even) or (𝑘Δ − 1)/2 (if Δ is
odd); thus, 𝐿∗𝐿 ≤

𝑘Δ/2
(𝑘−1)/2 = Δ(1 + 1

𝑘−1 ).

7.4. Algorithm Engineering

As the TCP can be considered an optimization problem on a weighted
graph, we can use approaches such as Integer Programming and local
search heuristics. Given the geometric origins of the TCP, we consider
geometric aspects; in addition, dealing with geometric data involved a
number of other aspects of algorithm engineering, such as accuracy and
correctness when handling locations, coordinates, and intersections.

7.4.1. Integer Programming

As a problem of combinatorial optimization, the TCP can be modeled as
an Integer Program (IP), for which solutions can be computed with the
help of powerful IP solvers. The following IP models the TCP.

max
∑

𝜏∈T,𝑒∈𝐸(𝜏)
𝑓 (𝑒)𝑥𝜏,𝑒

∑
𝑣∈𝑉 𝑦𝑣 ≤ 𝑘 (Constraint 1)

∀𝜏 = (𝑣0 , . . . , 𝑣𝑙) ∈ T :

∀𝑖 ∈ 0, . . . , 𝑙 − 1 :
{
𝑥𝜏,𝑣𝑖𝑣𝑖+1 ≤ 𝑦𝑖 if 𝑖 = 0,
𝑥𝜏,𝑣𝑖𝑣𝑖+1 ≤ 𝑦𝑖 + 𝑥𝜏,𝑣𝑖−1𝑣𝑖 else (Constraint 2)

∀𝑖 ∈ 1, . . . , 𝑙 :
{
𝑥𝜏,𝑣𝑖−1𝑣𝑖 ≤ 𝑦𝑖 if 𝑖 = 𝑙,
𝑥𝜏,𝑣𝑖−1𝑣𝑖 ≤ 𝑦𝑖 + 𝑥𝜏,𝑣𝑖𝑣𝑖+1 else (Constraint 3)

∀𝑣 ∈ 𝑉, 𝜏 ∈ 𝑒 ∈ 𝜏 : 𝑥𝜏,𝑒 , 𝑦𝑣 ∈ {0, 1}
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We have two types of Boolean variables: 𝑦𝑣 , for 𝑣 ∈ 𝑉 , which indicates
if node 𝑣 is one of the 𝑘 selected portals, and 𝑥𝜏,𝑒 , for edge 𝑒 ∈ 𝐸 on
trajectory 𝜏, which indicates if the portion 𝑒 of trajectory 𝜏 is captured by
selected portals. For an edge 𝑒, there are distinct variables, 𝑥𝜏,𝑒 , 𝑥𝜏′ ,𝑒 , for
trajectories 𝜏 ≠ 𝜏′, because 𝑒 can be captured in 𝜏 but not in 𝜏′.

Our objective function maximizes the weighted sum of captured trajectory
edges, where 𝐸 (𝜏) denotes the edges of 𝜏 in G, and 𝑓 (𝑒) is the weight
(i.e. length) of edge 𝑒. (Optionally, we could have trajectory-dependent
weights on edges.) Constraint 1 limits the number (≤ 𝑘) of selected portals.
Constraints 2 and 3 enforce that, in order for an edge to be captured as
part of trajectory 𝜏, there must be a selected portal in each direction; either
there is a selected portal at the next node, or the following trajectory edge
is also captured. In the latter case, because 𝜏 has no cycle (it is a simple
path), there must be a selected portal on 𝜏 at some point in that direction
if any portion of 𝜏 is to be captured.

An IP Example

Figure 7.4 shows an example for the IP formulated in Subsection 7.4.1;
using “𝑥𝑖” as shorthand for the IP variables 𝑥𝜏,𝑣𝑖𝑣𝑖+1 that correspond to
the edges along trajectory path 𝜏 = (𝑣0 , 𝑣1 , . . . , 𝑣6). Constraints 2 are:
𝑥0 ≤ 𝑦0, 𝑥1 ≤ 𝑦1 + 𝑥0, 𝑥2 ≤ 𝑦2 + 𝑥1 , . . . , 𝑥5 ≤ 𝑦5 + 𝑥4. Constraints 3
are: 𝑥5 ≤ 𝑦6, 𝑥4 ≤ 𝑦5 + 𝑥5, 𝑥3 ≤ 𝑦4 + 𝑥4 , . . . , 𝑥0 ≤ 𝑦1 + 𝑥1. With portals
selected at 𝑣1 and 𝑣4 (i.e., with 𝑦1 = 𝑦4 = 1, 𝑦𝑖 = 0 otherwise), we get
constraints 𝑥0 ≤ 0, 𝑥5 ≤ 0, and 𝑥4 ≤ 𝑦5 + 𝑥5 = 0, implying that only the
subpath (𝑣1 , 𝑣2 , 𝑣3 , 𝑣4) of 𝜏 contributes to the objective function.

Figure 7.4.: Formulating the IP: Trajec-
tory 𝜏 = (𝑣0 , 𝑣1 , . . . , 𝑣6) is highlighted
in blue. With selected portals at 𝑣1 and
𝑣4, the portion highlighted in red is cap-
tured.
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Fractional Solutions

Relaxing the integrality constraints of the IP may result in fractional
solutions. We show that the gap (ratio) between the best fractional and
the integral (optimal) solution objective functions can be arbitrarily large,
for any fixed 𝑘.
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l

Figure 7.5.: Example used in the proof
of Theorem 7.4.1.

Theorem 7.4.1 The integrality gap for the TCP IP can be arbitrarily large for
any 𝑘.

Proof. Consider the family of examples that arise from the arrangement
of segments corresponding to the embedding of the complete graph, 𝐾𝑛 ,
with its 𝑛 nodes embedded as evenly spaced points,𝑈 , on the boundary
of a circle of diameter 1; see Figure 7.5.

The corresponding arrangement graph Ghas vertices at the 𝑛 points𝑈 ,
as well as at the vertices (crossing points) in the arrangement; edges of G
connect consecutive vertices along the segments. The set T includes a
trajectory (of collinear edges) along each of the

(𝑛
2
)

line segments.

For 𝑘 = 1, the integrality gap is infinite, because the integral solution
cannot capture anything, while the fractional solution can capture the
edges fractionally. For 𝑘 > 1, the optimal solution can capture less than
𝑘2 trajectories, with a maximal trajectory length of 1, so 𝑂𝑃𝑇𝐼𝑁𝑇(𝑘) ≤ 𝑘2.
The fractional solution, however, can include fractional portals, with
variable values 𝑘/𝑛, at each of the 𝑛 points𝑈 , resulting in each trajectory
being captured fractionally with value 𝑘/𝑛. For simplicity and without
loss of generality, assume that 𝑛 is a multiple of 4. Then, each point𝑈 has
at least 𝑛/2 incident segments with length at least 0.5. To see this, simply
look onto the left most vertex: Each point of 𝑈 on the right half has a
distance of at least 0.5 (in fact, at least

√
0.5). This means that there are

at least 𝑛 · 𝑛4 trajectories with length of at least 0.5, so the overall length
of all trajectories is at least 𝑛2

8 . These trajectories are all captured with
fraction at least 1/𝑘, so 𝑂𝑃𝑇𝐹𝑅𝐴𝐶(𝑘) ≥ 1

𝑘
· 𝑛2

8 . With

𝑂𝑃𝑇𝐹𝑅𝐴𝐶(𝑘)
𝑂𝑃𝑇𝐼𝑁𝑇(𝑘)

≥
1
𝑘
· 𝑛2

8
𝑘2 ≥ 𝑛2

8𝑘3 ,

we obtain an arbitrarily large integrality gap, as 𝑛 increases (for any fixed
𝑘).

For instances arising from non-overlapping (i.e., no parallel segments
may share more than one point) axis-parallel segments, we can bound
the integrality gap, because the particularly bad “clusters” of the general
case cannot occur.

Theorem 7.4.2 For trajectories Tarising from non-overlapping axis-parallel
line segments, the integrality gap is at most 𝑘

⌊𝑘/2⌋ , for 𝑘 ≥ 2.

Proof. We can easily get an integral solution by simply capturing the ⌊ 𝑘2 ⌋
longest trajectories (segments) by selecting their at most 𝑘 endpoints as
portals.

We create a new LP instance, called LP2, by including two copies 𝑣1 , 𝑣2 of
each portal variable 𝑣, so that one copy lies only on horizontal segments,
while the other lies only on vertical segments. We constrain 𝑦𝑣1 = 𝑦𝑣2 = 𝑦𝑣
and allow a budget of 2𝑘 portals for LP2. Any feasible values for the 𝑦𝑖
in the original LP solution are still feasible in LP2 (setting both copies),
so the optimal solution of LP2 is an upper bound for the original LP.
Because segments do not overlap, every portal now lies only on a single
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segment. Thus, the optimal solution for LP2 covers the 2𝑘
2 = 𝑘 longest

segments. This shows the integrality gap is at most 𝑘
⌊𝑘/2⌋ .

The bound of Theorem 7.4.2 is tight for 𝑘 = 2: Consider four segments
that are edges of a unit square; then, 𝑘 = 2 portals can capture at most
length 1, while a fractional value of 1/2 at each of the four corners yields
objective value 4/2 = 2 for the LP. For 𝑘 ≥ 4, it becomes increasingly
difficult to build instances with a high integrality gap.

7.4.2. Heuristics

Integer programming solvers can provide provably optimal or near-
optimal solutions for relatively large instances. However, eventually
runtime and memory requirements become a limiting factor for large
enough instances, so it becomes important to develop effective heuristics.
We consider a spectrum of heuristics: Greedy, which constructs solutions
from scratch by locally optimal choices; Iterated Local Search, which
iteratively improves a current solution by finding a better one in its local
neighborhood; Simulated Annealing, which uses a “temperature” function
that governs the probability of temporarily accepting a worse solution
during a local search; and Genetic Algorithms, which maintain a selection
of solutions that are locally modified and combined to achieve gradually
better solutions.

Greedy begins by selecting the two portals at the ends of the longest
trajectory, and then incrementally, greedily selects portals that in each
step increase the total captured length as much as possible. Greedy can be
fooled and give poor solutions; it can, though, serve to give a reasonable
starting solution for our other metaheuristics.

Iterated Local Search (ILS) is a basic metaheuristic that, given an initial
solution, iteratively replaces the current solution with the best solution
found by applying a single local modification, until no further improve-
ment can be achieved. The set of solutions that can be obtained by a
single local modification from a specific solution is called its neighborhood.
For a local modification operator based on changing a single portal, the
neighborhood consists of all solutions that differ in exactly one portal.
The smaller the neighborhood, the faster the best solution within it can
be found; however, a smaller neighborhood also reduces the search space
and correspondingly can reduce the quality of the obtained solutions.
We consider global neighborhoods, based on moving a random portal to
an alternative random candidate node, and local neighborhoods, based on
moving a single portal to positions adjacent to other (unmoved) portals.
ILS is initialized with any reasonable solution; after some experimenta-
tion with alternatives (e.g., random selection), we settled on using Greedy
as the starting solution for ILS.

Simulated Annealing (SA) is similar to ILS, but instead of searching for
the best solution in the neighborhood, it selects a random solution in
the neighborhood and moves to it if (1) it is an improvement, or (2) if it
is not an improvement, but it passes a random test. The probability of
moving to a worse solution is determined by a “temperature function”
and decreases with time. Initially, it can easily escape local optima; when
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Figure 7.6.: Distribution of regular in-
stances in the benchmark set.

the search satisfies a termination criterion, it returns the best solution it
found.

We consider three different termination criteria: the total number of
iterations, the number of iterations without an improvement, and the
total runtime. For temperature regulation, we use a geometric reduction
by a constant multiplicative amount; for diversification we “reheated”
the temperature to the start temperature when we did not change the
solution for a certain number of iterations. For translating the tempera-
ture function to a probability function, we use the Boltzmann function:
boltzmann(𝑠′, 𝑠′′, 𝑇) := exp(−

𝑠′−𝑠′′
𝑇 ), where 𝑠′ and 𝑠′′ are the captured

weight of two neighboring solutions. In addition, we use parallelization
for pursuing multiple searches from different starting points.

Evolutionary algorithms (EAs) are motivated by the way adaption to envi-
ronmental conditions happens in nature. They maintain a “population”
of current solutions. At each step, the EA produces new solutions through
mutations (i.e., local changes) and recombination (combining pieces of
solutions in the current population to create new ones). Then, the EA
keeps the best solutions (previous or new) to maintain a stable population
size. We create the initial population by a version of Greedy that starts
with a random segment instead of the longest one. For mutations, we use
ILS or SA. The probability of selection for recombination is 𝑓 (𝑠)− 𝑓 (𝑠min)∑

𝑠′∈𝑆 𝑓 (𝑠′) .
We use uniform random crossover.

7.4.3. Generating Benchmark Instances

Our IP and heuristic methods apply to general sets of trajectories T, given
by spatiotemporal or combinatorial data. We focus on geometric instances,
most of which are based on line-segment trajectories. Instances based on
random segments tend to be very easy to solve because most vertices have
degree 2. So we generated instances based on a set of seed points and
selected segments linking them, resulting in arrangement graphs with
multi-trajectory intersections and more complicated covering graphs.
Alternatively, we tested adding new intersection points to the set of seed
points when incrementally constructing the arrangement. For all methods,
we used exact intersection point computations from the Computational
Geometry Algorithms Library (CGAL) to overcome problems of floating
point precision for large instances. We generated seed points randomly,
using a variety of spatial distributions, including uniform distributions,
point sets from the TSP benchmark library [198], and point sets with
density distributions based on light maps, corresponding to population
densities (see [21]). The distribution of the regular instances can be seen
in Figure 7.6.

7.4.4. Experimental Evaluation

All experiments were performed on a single Intel® Core™ i7-4770
(4 × 3.4 GHz) with 32 GB and CPLEX (V12.7.1 with default settings),
with a time limit of 900 s. The code is available at https://github.com/
ahillbs/trajectory_capturing.

https://github.com/ahillbs/trajectory_capturing
https://github.com/ahillbs/trajectory_capturing
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Figure 7.7.: Test results for solved and un-
solved instances using the IP. The num-
ber of seed points varies from 35 up to
55 points. All tests were performed with
a time limit of 900 s.

0 2000 4000 6000 8000

Candidate Points

0

20

40

60

80

100

In
st

an
ce

s
so

lv
ed

in
ti

m
e

(%
)

Higher is better

15

17

19

21

23

25

(a) Solved and unsolved instances.

2000 4000 6000 8000

Candidate Points

0

200

400

600

800

R
u

n
ti

m
e

(s
)

Lower is better

k=15

(b) Time used for instances with 𝑘 = 15

Integer and Linear Programming

We first consider the sizes of instances that our IP can solve to optimality
within a 900 s time limit, and we consider which factors contribute to the
difficulty of the instance.

We varied the number of seed points between 35 and 55 and varied the
(uniform) probability of a segment connecting two seeds between 10 %
and 20 %. In Figure 7.7a, we see that instances with up to about 2500
candidate points (i.e., nodes at intersection points in the arrangement,
where portals can be placed) can be solved for 15 ≤ 𝑘 ≤ 23 to provable
optimality within the time limit. Instances with more than 2500 candidate
points are most often not solved for 𝑘 < 23. For instances with 𝑘 ≥ 23,
the problem seems to be easier to solve. A reason for this may be that
these many portals are sufficient to cover all important intersections for
many of the considered instances. In Figure 7.7b we see that for 𝑘 = 15
and between 1500 and 2000 candidate points, instances start to become
very difficult to solve. However, for 𝑘 ≥ 23, instances are still solvable
for more than 2500 candidate points. The increase of solved instances in
the end can be by chance due to the sparsity of instances with more than
6000 candidate points. However, it may also be that larger instances have
more high-yield points with many intersections or clusters which are
obvious choices and simplify the portal placement.

Heuristic Methods

Neighborhoods for Local Methods. For modifying a given solution, we
considered global neighborhoods, in which a portal is moved to an arbi-
trary other position, and local neighborhoods, in which a portal is only
moved to positions that connect to another portal. Using global neigh-
borhoods, all solutions are theoretically quickly reachable, but they are
significantly larger than local neighborhoods and, thus, a meta-heuristic
may not work in a focused enough way. Details of this comparison can be
found in Section 7.4.4 (Local vs. Global Neighborhoods) on the next page;
in particular Figure 7.9 shows our experimental evaluation. Iterated Local
Search yields the same solution quality for both neighborhoods; with
global neighborhood, only the runtime increases. Simulated Annealing
with global neighborhoods barely improves the initial greedy solution,
while it gives the best solutions with local neighborhoods.
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As a result, we used local neighborhoods for all meta-heuristics.

Mutation Strategy for Evolutionary Algorithms. For evolutionary algo-
rithms, choosing the right kinds of mutations is of crucial importance, as
these allow reaching solutions that are not achievable only via recom-
bination. Practical usefulness requires focused mutations that have a
high probability of being useful, instead of purely random changes. That
is why we considered Iterated Local Search and Simulated Annealing
as mutation operations. As Simulated Annealing has a longer runtime,
we used a faster terminating version (with potentially worse solutions)
when using it for mutation. In the following we refer to the version with
Simulated Annealing as EASA and with Iterated Local Search as EAIS.
We have a start with 100 solutions and keep an ongoing population
of 50 solutions. The evolutionary algorithm stops after 15 min (but can
take slightly longer to finish the last round) or if it has not found an
improvement for multiple rounds.
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Figure 7.8.: Comparison of solution qual-
ity and runtime by Evolutionary Algo-
rithm with Iterated Local Search and
with Simulated Annealing.

Figure 7.8 shows the experimental comparison of both mutation variants.
One can see that EASA performs slightly better and is significantly faster
for smaller instances. This implies that EASA often quickly finds a good
solution but is usually not able to improve it further and terminates early.
EAIS, on the other hand, is able to improve its quality until the time limit
but remains slightly worse. For the further experiments, we settled on
EASA.

Local vs. Global Neighborhoods

A test for the comparison between Integer Linear Programming and
heuristic approaches in Subsection 7.4.4 focuses on choosing good neigh-
borhoods for the meta-heuristics. To this end, we compared the results of
local vs. global neighborhoods with respect to quality and time.

Results are shown in Figure 7.9. When using a global neighborhood, it
turns out that in most cases, Simulated Annealing does not find better
solutions than those provided by greedy. This is most likely due to the fact
that the neighborhood space is too large: Looking for a random neighbor
will result in a swapped portal that is not connected to another portal
via segments, yielding a worse solution. Therefore, the objective value is
lowered at high temperatures, while better neighboring solutions will
be hard to find at lower temperatures. This is illustrated in Figure 7.9a,
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Figure 7.9.: Comparison of solutions for
local and global neighborhood with It-
erated Local Search and Simulated An-
nealing for 𝑘 = 25.
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where runtimes are lower than for any other heuristic, except for greedy.
This is because the algorithm terminates if no improvements of the best
solution are found for a certain number of iterations. As a result, global
neighborhoods are not recommended for Simulated Annealing.

On the other hand, the results with local neighborhoods are better with
respect to the objective value. However, Simulated Annealing with local
neighborhood also requires the largest runtimes by a wide margin, in
particular for large instances, as shown in Figure 7.9a. This can be ex-
plained by the “reheating” process after low temperatures: The algorithm
tries to find better solutions than the current solution for a while; if no
better solution is found for a fixed number of iterations, it reheats the
temperature to escape a local optimum, allowing worse solutions as the
current one. As the process continues when an improvement is found,
the resulting gradual search process may continue for a long time.

Both the local and the global variants of Iterated Local Search produce
almost always the same solution values, as shown in Figure 7.9b. This
is due to the fact that both are looking for the best neighbor in every
iteration. Because a swapped portal needs to be connected to one or more
portals via segments, the local neighborhood consists of all vertices that
are connected to at least one portal via segments. Therefore, both search
variants produce the same solutions almost every time. This makes local
Iterated Local Search slightly preferable: As shown in Figure 7.9a, it is
marginally faster than global Iterated Local Search by a small margin,
due to smaller search space. (This effect is not more pronounced because
the search for a locally best neighbor seems to be almost as slow as for a
globally best neighbor.)

Overall local neighborhoods appear to perform better than global ones,
which is why they were selected for the following tests.

Comparison of Heuristics with IP as Baseline

We compared the heuristics in terms of solution quality and runtime
against the IP solver, which produces not only solutions, but also guaran-
teed bounds.

Figure 7.10 shows the obtained results. The Evolutionary Algorithm
produces, on average, the worst solutions of all metaheuristics, while still
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Figure 7.10.: Comparisons of solution
quality and runtime for all tested algo-
rithms.

requiring more time than the others. However, it is the only metaheuristic
tested that reliably computes good solutions for instances consisting of
several point clusters, for which solutions consist of several connected
components. These instances did not occur with our generation method
but only in separate, manually created instances which are not part of
this experiment.

The greedy approach never falls below 1
2 OPT for these instances, while

being the fastest.

Iterated Local Search (ILS) appears to produce quite good solutions,
which are not worse than 10 % below the optimal solution, in a very
short time frame. While it only finds a local optimum, it seems that the
objective function quality of these are quite close to the optimal values.
As a consequence, Iterated Local Search can produce good solutions for
instances with up to 5000 candidate points and 𝑘 = 25.

The best heuristic algorithm, in terms of solution quality and runtime,
appears to be Simulated Annealing. The combination of fast diversifica-
tion at high temperature and random swaps for improving solutions at
low temperature seems to work quite well; in addition, the mechanism of
reheating to restart diversification, in combination with multi-threading
to cover a larger search space, are characteristics that are not present in
the Evolutionary Algorithm. For 𝑘 = 25, Simulated Annealing produces
excellent solutions for instances with up to 5000 candidate points; this
instance size can be easily increased for smaller 𝑘.

In summary, we can produce excellent heuristic solutions for instances
with up to 5000 candidate points and 𝑘 = 25. If fast solutions are desired,
Iterated Local Search is the method of choice. The best tradeoff between
runtime and solution quality is offered by Simulated Annealing. Finally,
for cluster-based instances, we recommend Evolutionary Algorithms.

Linear Programming and Integrality Gap

As described in Section 7.3, if the TCP input trajectories come from 𝐾

subsets of noncrossing trajectories, we have a 𝐾-approximation algorithm
based on dynamic programming. In particular, if the input trajectories
consist of axis-parallel line segments, 𝐾 = 2, so there is a 2-approximation.
This may coincide with better practical solvability of these kinds of
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Figure 7.11.: An instance with 1100 non-
degenerate axis-parallel segments

instances. We have verified this for some instances for which all segments
are axis-parallel and (for collinear segments) non-overlapping. (See
Figure 7.11 for such an instance with 1100 segments and roughly 8200 to
8500 candidate points. We have also solved instances with 2000 segments
and 19 000 candidate points.) Furthermore, for instances with up to 20 000
points, the integrality gap was never larger than 20 % for 𝑘 = 5, 7 % for
𝑘 = 10, 5% for 𝑘 = 15 and less than 2.5% for larger 𝑘.

Application to Taxi Trajectory Data

We have applied our TCP model to solve real-world data sets to optimality.
In Figure 7.12 we show the results of computing 𝑘 = 5 optimal portals
for a set of trajectories based on taxi cab routes in the San Francisco Bay
Area. The data is based on 375 vehicles, sampled every 5 min, 288 times
per day, for one week [199]; see the trajectories in Figure 7.1.

Our experiments included runs on 30 instances, with 𝑘 ranging from 5
to 11, on sets of 10 to 120 trajectories of varying lengths (comprised of
1300 to 3700 edges, and 600 to 1800 vertices). The trajectories are snapped
to a regular grid graph. Solution times of the IP were up to 200 s of
computation, with most instances taking less than 10 seconds.

7.5. Conclusion

We have introduced the trajectory capture problem (TCP), an optimization
problem in which we seek to place 𝑘 points (or portals) in order to
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Figure 7.12.: (Left) Candidate points be-
fore processing. (Right) Solution to real-
world TCP instance: An optimal set of
𝑘 = 5 portals are highlighted. Red trajec-
tory portions (some of which may loop
back) are captured, blue ones are not
captured. Satellite images are courtesy
of Planet Labs Inc.

“capture” the maximum total length of a given set of paths/trajectories
between two placed points. We have shown that the problem is NP-hard,
even for axis-aligned line segment trajectories in the plane, and we have
given approximation algorithms for two cases. Can we improve the
approximation factor of 𝐾 for a set of trajectories that is the union of 𝐾
subsets, each of which is noncrossing? Can we improve the approximation
factor of Δ for a set of trajectories of depth at most Δ?

A focus of our work is the exploration, via algorithm engineering, of
practical methods for solving the TCP. Our methods are based on
integer programming and on simple heuristic search methods. It will be
interesting to develop more specified methods for other, specific classes
of instances, such as further geometric instances arising from other types
of real-world geographic data.





Part IV.

Tilt Problems
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In the first part of this thesis, we considered satellites in space. In the
second part, we considered drones and robots on earth. In this fourth
part, we consider controlling tiny particles with applications within the
human body.

At a specific size, agents can no longer actuate themselves, rather need to
be controlled by external forces. While the volume and energy capacity
of an agent decrease cubically with its size, the surface and fraction only
decrease quadratically. If the agents cannot carry enough energy to move
themselves, we can move them by applying external, e.g., magnetic forces.
This gives rise to new geometric problems, which we call tilt problems.

In Chapter 8 (Tilt Assembly) on page 177, we consider how to construct
miniature shapes by iteratively adding sticky particles from the outside
using such an external force. It is not possible for all shapes to be
constructed this way, and finding a construction sequence is a difficult
problem. We provide a set of theoretical results and use a SAT-solver
to find construction sequences for shapes consisting of more than 500
particles.

In Chapter 9 (Targeted Drug Delivery) on page 203, we try to use the
external forces to guide a set of particles to a specific location, e.g., to
a tumour for targeted drug delivery. The challenge is that the external
force actuates all particles equally and manipulations are only possible
by collisions with the environment. We show that the involved problem
is NP-hard even in two-dimensional environments, but we also provide
algorithms with performance guarantees. However, in our computational
study, reinforcement learning performs significantly better than the
classical algorithmic approaches and local heuristics. Thus, we also take
a look at how we can solve optimization problems with reinforcement
learning algorithms.
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This chapter presents algorithmic results for the parallel assembly
in two and three dimensions of many micro-scale objects from tiny
particles, which has been proposed in the context of programmable
matter and self-assembly for building high-yield micro-factories. The
underlying model has particles moving under the influence of uniform
external forces until they hit an obstacle. Particles bond when forced
together with another appropriate particle. Aside from a number
of theoretical results and tools, we discuss how to use a SAT-solver
to compute construction sequences for shapes with more than 500
particles or to prove infeasibility.

8.1. Introduction

In recent years, progress on flexible construction at micro- and nano-scale
has given rise to a large set of challenges that deal with algorithmic
aspects of programmable matter. Examples of cutting-edge application
areas with a strong algorithmic flavor include self-assembling systems, in
which chemical and biological substances such as DNA are designed to
form predetermined shapes or carry out massively parallel computations;
and swarm robotics, in which complex tasks are achieved through the
local interactions of robots with severely limited individual capabilities,
including micro- and nano-robots.

Moving individual particles to their appropriate attachment locations
when assembling a shape is difficult because the small size of the particles
limits the amount of onboard energy and computation. One successful
approach to dealing with this challenge is to use molecular diffusion in
combination with cleverly designed sets of possible connections: in DNA
tile self-assembly, the particles are equipped with sophisticated bonds that
ensure only a predesigned shape is produced when mixing together a
set of tiles, see [200]. The resulting study of algorithmic tile self-assembly
has given rise to an extremely powerful framework and produced a wide
range of impressive results. However, the required properties of the
building material (which must be specifically designed and finely tuned
for each particular shape) in combination with the construction process
(which is left to chemical reactions, so it cannot be controlled or stopped
until it has run its course) make DNA self-assembly unsuitable for some
applications.

An alternative method for controlling the eventual position of particles is
to apply a uniform external force, causing all particles to move in a given
direction until they hit an obstacle or another blocked particle. Becker et
al. [201] have shown, combining this approach with custom-made obsta-
cles (instead of custom-made particles) allows complex rearrangements
of particles, even in grid-like environments with axis-parallel motion.
The appeal of this approach is that it shifts the design complexity from

∗This chapter is based on [8]. Subsection 8.3.4 is a part of [9]. Section 8.6 is new content.
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Figure 8.1.: A practical demonstration of Tilt Assembly based on alginate (i.e., a gel made by combining a powder derived from seaweed
with water) particles on a silicon wafer with obstacles etched in photoresist [202]. The obstacles appear as white lines and block the
motion of particles. (a) Alginate particles in initial positions. (b) After control moves of ⟨𝑒 , 𝑠, 𝑤, 𝑛, 𝑒 , 𝑠⟩ (for east, south, west, north), the
alginate microrobots move to the shown positions. (c) After ⟨𝑤, 𝑛⟩ inputs, the system produces the first multi-microrobot polyomino.
(d) The next three microrobot polyominoes are produced after applying multiple ⟨𝑒 , 𝑠, 𝑤, 𝑛⟩ cycles. (e) After the alginate microrobots
have moved through the microfluidic factory layout, the final 4-particle polyomino is generated. This figure originates from [202].

Figure 8.2.: A polyomino (black) that
cannot be constructed by Tilt Assembly:
the last tile cannot be attached, as it gets
blocked by previously attached tiles.

the building material (the tiles) to the machinery (the environment). As
practical work by Manzoor et al. [202] shows, it is possible to apply this
to simple “sticky” particles that can be forced to bond, see Figure 8.1: the
overall assembly is achieved by adding particles one at a time, attaching
them to the existing sub-assembly.

Moreover, Manzoor et al. [202] argue that it is possible to enhance the
overall assembly environment to allow pipelined construction, as shown
in Figure 8.3: after constructing the first polyomino, each cycle of a small
control sequence produces another polyomino. However, the algorithmic
part of [202] is purely heuristic; providing a thorough understanding of
algorithms and complexity is the content of this chapter.

One critical issue of this approach is the requirement of getting particles to
their destination without being blocked by or bonding to other particles.
As Figure 8.2 shows, this is not always possible, so there are some shapes
that cannot be constructed by Tilt Assembly.

This gives rise to a variety of algorithmic questions:

1. Can we decide efficiently whether a given polyomino can be con-
structed by Tilt Assembly?

2. Can the resulting process be pipelined to yield low amortized
building time?

3. Can we compute a maximum-size subpolyomino that can be con-
structed?

4. What can be said about three-dimensional versions of the problem?
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Figure 8.3.: (Top left) Initial setup of a seven-tile polyomino assembly; the composed shape is shown enlarged on the lower left. The
bipartite decomposition into blue and red particles is shown for greater clarity, but can also be used for better control of bonds. The
sequence of control moves is ⟨𝑒 , 𝑠, 𝑤, 𝑛⟩, i.e., a clockwise order. (Bottom left) The situation after 18 control moves. (Right) The situation
after 7 full cycles, i.e., after 28 control moves; shown are three parallel “factories”. This figure originates from [202].

8.1.1. Overview

The main result of this chapter is a characterization of deciding con-
structibility and efficient construction for simply connected two-dimensional
shapes in Section 8.3: For a simple polyomino 𝑃 with 𝑁 pixels, we can
decide in time 𝑂(𝑁 log𝑁) whether 𝑃 can be constructed; using pipelin-
ing, a constructible polyomino can be built in amortized time 𝑂(1). On
the other hand, we show that deciding constructibility in 3D is NP-
complete in Section 8.5. We also provide a number of additional results
on approximation and the constructibility of subpaths; see Table 8.1 for
an overview. Finally, we perform a computational study in Section 8.6
showing how we can prove or disprove constructability of arbitrary
two-dimensional and three-dimensional instances with more than 500
tiles using a SAT-solver.

Dimension 2D 3D

Polyomino simple general
Decision 𝑂(𝑁 log𝑁) (Section 8.3) NP-complete (Section 8.5)
Maximization polyAPX-hard polyAPX-hard
Approximation 𝑂(𝑁1/3), Ω(

√
𝑁) (Section 8.4) 𝑂(𝑁1/3), - (Section 8.4)

Constructible Path 𝑂(𝑁 log𝑁) (Section 8.4) NP-complete (Section 8.5)

Table 8.1.: Results for Tilt Assembly Prob-
lem (TAP) and its maximization variant
(MaxTAP)

8.1.2. Related Work

Assembling polyominoes with tiles has been considered intensively in
the context of tile self-assembly. In 1998, Erik Winfree [200] introduced the
abstract tile self-assembly model (aTAM), in which tiles have glue types on
each of the four sides and two tiles can stick together if their glue type
matches and the bonding strength is sufficient. Starting with a seed tile,
tiles will continue to attach to the existing partial assembly until they
form a desired polyomino; the process stops when no further attachments
are possible. For early examples of related work, see Rothemund and
Winfree [203] and Adleman et al. [204] for the running time and program
size for self-assembling squares. Apart from the aTAM, there are various
other models like the two-handed tile self-assembly model (2HAM) [205] and
the hierarchical tile self-assembly model [206], in which we have no single seed
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but pairs of subassemblies that can attach to each other. Furthermore, the
staged self-assembly model [207–209] allows greater efficiency by assembling
polyominoes in multiple bins which are gradually combined with the
content of other bins.

All this differs from the model in Tilt Assembly, in which each tile has
the same glue type on all four sides, and tiles are added to the assembly
one at a time by attaching them from the outside along a straight line.
This approach of externally movable tiles has been considered in practice
at the micro-scale level using biological cells and an MRI, see [210–212].
Becker et al. [213] consider this for the assembly of a magnetic Gauß gun,
which can be used for applying strong local forces by very weak triggers,
allowing applications such as microsurgery.

Using an external force for moving the robots becomes inevitable at
some scale because the energy capacity decreases faster than the energy
demand. A consequence is that all non-fixed robots/particles perform
the same movement, so all particles move in the same direction of
the external force until they hit an obstacle or another particle. These
obstacles allow shaping the particle swarm. Designing appropriate sets
of obstacles and moves gives rise to a range of algorithmic problems.
Deciding whether a given initial configuration of particles in a given
environment can be transformed into a desired target configuration is
NP-hard [201], even in a grid-like setting, whereas finding an optimal
control sequence is shown to be PSPACE-complete by Becker et al. [214].
However, if designing the obstacles is allowed, the problems become more
tractable [201]. Moreover, even complex computations become possible:
If we allow additional particles of double size (i.e., two adjacent fields),
full computational complexity is achieved, see Shad et al. [215]. Further
related work includes gathering a particle swarm at a single position [22]
and using swarms of very simple robots (such as Kilobots) for moving
objects [216]. For the case in which human controllers have to move
objects by such a swarm, Becker et al. [217] study different control options.
The results are used by Shahrokhi and Becker [218] to investigate an
automatic controller.

The construction of polyominoes has also applications in the field of robot
swarms, e.g., shape formation. Werfel and Nagpal [219, 220] show how
multiple robots can move tiles to a partial assembly to construct a desired
shape in 2D and 3D. Derakhshandeh et al. [221, 222] consider the robots
as building material, which have 𝑂(1)memory, and provide algorithms
letting the robots form or coat shapes. In a recent paper, Demaine et
al. [223, 224] show that a robot swarm can be reconfigured in time 𝑂(𝑑)
unit steps, where 𝑑 is the maximum distance of any robot. However, this
requires the robots to be well separable. Arbuckle and Requicha [225]
show how a self-organized swarm of robots can construct a certain shape.
In case of robot failures or external disturbance, the swarm is also able to
repair the shape.

Further related work includes robots performing various tasks: Thubagere
et al. [226] show that robots made from DNA can simultaneously sort
molecular cargoes. Rubenstein et al. [227] consider a swarm of simple
robots moving an object to a desired destination without knowing its
shape and weight. Hoffmann [228] proves that it is NP-hard to decide if
a robot can push its way through an area filled with blocks.
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8.2. Preliminaries

In this section we define our model used throughout this paper.

Polyomino: For a set 𝑃 ⊂ ℤ2 of 𝑁 grid points in the plane, the graph
𝐺𝑃 is the induced grid graph, in which two vertices 𝑝1 , 𝑝2 ∈ 𝑃
are connected if they are at unit distance. Any set 𝑃 with con-
nected grid graph 𝐺𝑃 gives rise to a polyomino by replacing each
point 𝑝 ∈ 𝑃 by a unit square centered at 𝑝, which is called a tile;
for simplicity, we also use 𝑃 to denote the polyomino when the
context is clear, and refer to 𝐺𝑃 as the dual graph of the poly-
omino; 𝑃 is tree-shaped if 𝐺𝑃 is a tree. A polyomino is called hole-free
or simple if and only if the grid graph induced byℤ2\𝑃 is connected.

Blocking sets: For each point 𝑝 ∈ ℤ2 we define blocking sets 𝑁𝑝 , 𝑆𝑝 ⊆ 𝑃
as the set of all points 𝑞 ∈ 𝑃 that are above or below 𝑝 and
|𝑝𝑥 − 𝑞𝑥 | ≤ 1. Analogously, we define the blocking sets 𝐸𝑝 ,𝑊𝑝 ⊆ 𝑃
as the set of all points 𝑞 ∈ 𝑃 that are to the right or to the left of 𝑝
and |𝑝𝑦 − 𝑞𝑦 | ≤ 1.

Construction step: A construction step is defined by a direction 𝑑 ∈{north,
east, south, west} (abbreviated by 𝑛, 𝑒 , 𝑠, 𝑤) from which a tile is
added and a latitude/longitude 𝑙 describing a column or row.
The tile arrives from (𝑙 ,∞) for north, (∞, 𝑙) for east, (𝑙 ,−∞) for
south, and (−∞, 𝑙) for west into the corresponding direction until
it reaches the first grid position that is adjacent to one occupied
by an existing tile. If there is no such tile, the polyomino does not
change. We note that a position 𝑝 can be added to a polyomino 𝑃 if
and only if there is a point 𝑞 ∈ 𝑃 with | |𝑝 − 𝑞 | |1 = 1 and one of the
four blocking sets, 𝑁𝑝 , 𝐸𝑝 , 𝑆𝑝 or𝑊𝑝 , is empty. Otherwise, if none
of these sets are empty, this position is blocked.

Constructibility: Beginning with a seed tile at some position 𝑝, a
polyomino 𝑃 is constructible if and only if there is a sequence
𝜎 = ((𝑑1 , 𝑙1), (𝑑2 , 𝑙2), . . . , (𝑑𝑁−1 , 𝑙𝑁−1)), such that the resulting poly-
omino 𝑃′, induced by successively adding tiles with 𝜎, is equal to
𝑃. We allow the constructed polyomino 𝑃′ to be a translated copy
of 𝑃. Reversing 𝜎 yields a decomposition sequence, i.e., a sequence of
tiles removed from 𝑃.

8.3. Constructibility of Simple Polyominoes

In this section we focus on hole-free (i.e., simple) polyominoes. We
show that the problem of deciding whether a given polyomino can be
constructed can be solved in polynomial time. This decision problem can
be defined as follows.

Definition 8.3.1 (Tilt Assembly Problem) Given a polyomino 𝑃, the Tilt
Assembly Problem (TAP) asks for a sequence of tiles constructing 𝑃, if 𝑃 is
constructible.
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Figure 8.4.: A polyomino and its locally
convex tiles (white). Removing the non
locally convex tile 𝑡 destroys decompos-
ability. The polyomino can be decom-
posed by starting with the three tiles
above 𝑡.

t

Figure 8.5.: With non-simple polygons
we may not be able to remove locally
convex tiles. Removing the locally con-
vex tile 𝑡 leaves the polyomino non-
decomposable; it can be decomposed by
starting from the bottom or the sides.

8.3.1. A Key Lemma

A simple observation is that construction and (connectivity-preserving)
decomposition are the same problem. This allows us to give a more
intuitive argument, as it is easier to argue that we do not lose connectivity
when removing tiles than it is to prove that we do not block future
tiles.

Theorem 8.3.1 A polyomino 𝑃 can be constructed if and only if it can be
decomposed using a sequence of tile removal steps that preserve connectivity.
A construction sequence is a reversed decomposition sequence.

Proof. To prove this theorem, it suffices to consider a single step. Let 𝑃 be
a polyomino and 𝑡 be a tile that is removed from 𝑃 into some direction 𝑙,
leaving a polyomino 𝑃′. Conversely, adding 𝑡 to 𝑃′ from direction 𝑙 yields
𝑃, as there cannot be any tile that blocks 𝑡 from reaching the correct
position, or we would not be able to remove 𝑡 from 𝑃 in direction 𝑙.

For hole-free polyominoes we can efficiently find a construction/decom-
position sequence if one exists. The key insight is that one can greedily
remove locally convex tiles. A tile 𝑡 is said to be locally convex if and only if
it is locally extremal, i.e., there are two axis-parallel orthogonal directions
for which there is no tile connected to 𝑡; see Figure 8.4. If a locally convex
tile is not a cut tile, i.e., it is a tile whose removal does not disconnect the
polyomino, its removal does not interfere with the decomposability of
the remaining polyomino.

This conclusion is based on the observation that a minimal cut (i.e., a
minimal set of vertices whose removal leaves a disconnected polyomino)
of cardinality two in a hole-free polyomino always consists of two
(possibly diagonally) adjacent tiles. Furthermore, we can always find
such a removable locally convex tile in any decomposable hole-free
polyomino. This allows us to devise a simple greedy algorithm.

We start by showing that if we find a non-blocked locally convex tile
that is not a cut tile, we can simply remove it. It is important to focus
on locally convex tiles, as the removal of not locally convex tiles can
harm the decomposability: see Figure 8.4 for an illustration. In non-
simple polyominoes, the removal of locally convex tiles can destroy
decomposability, as demonstrated in Figure 8.5.

Lemma 8.3.2 Consider a non-blocked, non-cut, locally convex tile 𝑡 in a
hole-free polyomino 𝑃. The polyomino 𝑃 − 𝑡 is decomposable if and only if 𝑃
is decomposable.

Proof. The first direction is trivial: if 𝑃 − 𝑡 is decomposable, 𝑃 is de-
composable as well, because we can remove the non-blocked tile 𝑡 first
and afterward use the existing decomposition sequence for 𝑃 − 𝑡. The
other direction requires some case distinctions. Suppose for contradiction
that 𝑃 is decomposable but 𝑃 − 𝑡 is not, i.e., 𝑡 is important for the later
decomposition.
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(a) If the unblocked directions of 𝑡 and
𝑡′ are orthogonal, one of the two adja-
cent tiles (w.l.o.g. 𝑎) cannot have any
further neighbors. There can also be no
tiles in the upper left corner, because the
polyomino cannot cross the two free di-
rections of 𝑡 and 𝑡′ (red marks).
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(b) If the unblocked directions of 𝑡 and
𝑡′ are parallel, there is only the tile 𝑐
for which something can change if we
remove 𝑡 before 𝑡′.

Figure 8.6.: The red marks indicate that
no tile is at this position; the dashed out-
line represents the rest of the polyomino.
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(a) If the removal direction of 𝑡 is not
crossed, the last blocking tile has to be
locally convex (and has to be removed
before 𝑡).
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(b) If the removal direction of 𝑡 crosses 𝑃,
then 𝑃 gets split into components 𝐴 and
𝐵. Component 𝐵 has a locally convex tile
𝑡′ that needs to be removed before 𝑡.

Figure 8.7.: Polyominoes for which no
locally convex tile should be removable,
showing the contradiction to 𝑡 being the
first blocked locally convex tile in 𝑃 re-
moved.

Consider a valid decomposition sequence for 𝑃 and the first tile 𝑡′ we
cannot remove if we were to remove 𝑡 in the beginning. W.l.o.g., let 𝑡′
be the first tile in this sequence (removing all previous tiles obviously
does not destroy the decomposability). When we remove 𝑡 first, we are
missing a tile, hence 𝑡′ cannot be blocked but has to be a cut tile in the
remaining polyomino 𝑃 − 𝑡. The presence of 𝑡 preserves connectivity, i.e.,
{𝑡 , 𝑡′} is a minimal cut on 𝑃. Because 𝑃 has no holes, then 𝑡 and 𝑡′ must
be diagonal neighbors, sharing the neighbors 𝑎 and 𝑏. Furthermore, by
definition neither of 𝑡 and 𝑡′ is blocked in some direction. We make a
case distinction on the relation of these two directions.

The directions are orthogonal (Figure 8.6a). Either 𝑎 or 𝑏 is a non-blocked
locally convex tile, because 𝑡 and 𝑡′ are both non-blocked; w.l.o.g.,
let this be 𝑎. It is easy to see that independent of removing 𝑡 or 𝑡′
first, after removing 𝑎 we can also remove the other one.

The directions are parallel (Figure 8.6b). This case is slightly more in-
volved. By assumption, we have a decomposition sequence begin-
ning with 𝑡′. We show that swapping 𝑡′ with our locally convex tile
𝑡 in this sequence preserves feasibility.
The original sequence has to remove either 𝑎 or 𝑏 before it removes
𝑡, as otherwise the connection between the two is lost when 𝑡′ is
removed first. After either 𝑎 or 𝑏 is removed, 𝑡 becomes a leaf and
can no longer be important for connectivity. Thus, we only need
to consider the sequence until either 𝑎 or 𝑏 is removed. The main
observation is that 𝑎 and 𝑏 block the same tiles as 𝑡 or 𝑡′, except for
tile 𝑐 as in Figure 8.6b. However, when 𝑐 is removed, c has to be a
leaf, because 𝑎 is still not removed and in the original decomposition
sequence, 𝑡′ has already been removed. Therefore, a tile 𝑑 ≠ 𝑡′

would have to be removed before 𝑐. Hence, the decomposition
sequence remains feasible, concluding the proof.

Next we show that such a locally convex tile always exists if the polyomino
is decomposable.

Lemma 8.3.3 Let 𝑃 be a decomposable polyomino. Then there exists a locally
convex tile that is removable without destroying connectivity.

Proof. We prove this by contradiction based on two possible cases.

Assume 𝑃 to be a decomposable polyomino in which no locally convex
tile is removable. Because 𝑃 is decomposable, there exists some feasible
decomposition sequence 𝑆. Let 𝑃convex denote the set of locally convex
tiles of 𝑃 and let 𝑡 ∈ 𝑃convex be the first removed locally convex tile in the
decomposition sequence 𝑆. By assumption, 𝑡 cannot be removed yet, so
it is either blocked or a cut tile.

𝑡 is blocked. Consider the direction in which we would remove 𝑡. If it
does not cut the polyomino, the last blocking tile has to be locally
convex (and would have to be removed before 𝑡), see Figure 8.7a.
If it cuts the polyomino, the component cut off also must have a
locally convex tile and the full component has to be removed before
𝑡, see Figure 8.7b. This is again a contradiction to 𝑡 being the first
locally convex tile to be removed in 𝑆.
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Figure 8.8.: When removing the red tile
(dark gray in grayscale), only the yellow
tiles (light gray in grayscale) can become
unblocked or locally convex.

𝑡 is a cut tile. 𝑃 − 𝑡 consists of exactly two connected polyominoes, 𝑃1
and 𝑃2. It is easy to see that 𝑃1 ∩ 𝑃convex ≠ ∅ and 𝑃2 ∩ 𝑃convex ≠ ∅,
because every polyomino of size 𝑛 ≥ 2 has at least two locally
convex tiles of which at most one ceases to be locally convex by
adding 𝑡. (A polyomino of size 1 is trivial.) Before being able to
remove 𝑡, either 𝑃1 or 𝑃2 has to be completely removed, including
their locally convex tiles. This is a contradiction to 𝑡 being the first
locally convex tile in 𝑆 to be removed.

8.3.2. An Efficient Algorithm

An iterative combination of these two lemmas proves the correctness of
greedily removing locally convex tiles. As we show in the next theorem,
using a search tree technique allows an efficient implementation of this
greedy algorithm.

Theorem 8.3.4 A hole-free polyomino can be checked for decomposability/-
constructibility in time 𝑂(𝑁 log𝑁).

Proof. Lemma 8.3.2 allows us to remove any locally convex tile, as long
as it is not blocked and does not destroy connectivity. Applying the
same lemma on the remaining polyomino iteratively creates a feasible
decomposition sequence. Lemma 8.3.3 proves that this is always sufficient.
If and only if we can at some point no longer find a matching locally
convex tile (to which we refer as candidates), the polyomino cannot be
decomposable.

Let 𝐵 be the time needed to check whether a tile 𝑡 is blocked. A naïve way
of doing this is to try out all tiles and check if 𝑡 gets blocked, requiring
time 𝑂(𝑁). With a preprocessing step, we can decrease 𝐵 to 𝑂(log𝑁)
by using 𝑂(𝑁) binary search trees for searching for blocking tiles and
utilizing that removing a tile can change the state of at most𝑂(1) tiles. For
every vertical line 𝑥 and horizontal line 𝑦 going through 𝑃, we create a
balanced search tree, i.e., for a total of𝑂(𝑁) search trees. An 𝑥-search tree
for a vertical line 𝑥 contains tiles lying on 𝑥, sorted by their 𝑦-coordinate.
Analogously define a 𝑦-search tree for a horizontal line 𝑦 containing tiles
lying on 𝑦 sorted by their 𝑥-coordinate. We iterate over all tiles 𝑡 = (𝑥, 𝑦)
and insert the tile in the corresponding 𝑥- and 𝑦-search tree with a total
complexity of 𝑂(𝑁 log𝑁). Note that the memory complexity remains
linear, because every tile is in exactly two search trees. To check if a tile
at position (𝑥′, 𝑦′) is blocked from above, we can simply search in the
(𝑥′−1)-, 𝑥′- and (𝑥′+1)-search tree for a tile with 𝑦 > 𝑦′. We analogously
perform search queries for the other three directions, and thus have 12
queries of total cost 𝑂(log𝑁).

We now iterate on all tiles and add all locally convex tiles that are not
blocked and are not a cut tile to the set 𝐹 (cost 𝑂(𝑁 log𝑁)). Note that
checking whether a tile is a cut tile can be done in constant time, because
it suffices to look into the local neighborhood. While 𝐹 is not empty, we
remove a tile from 𝐹, from the polyomino, and from its two search trees
in time 𝑂(log𝑁). Next, we check the up to 12 tiles that could have been
blocked by the removed tile, see Figure 8.8.
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Only these tiles can become unblocked or a locally convex tile. Those that
are locally convex tiles, not blocked, and not a cut tile are added to 𝐹. All
tiles behind those cannot become unblocked as the first tiles would still
be blocking them. If one of those tiles becomes a cut tile, then we remove
it from 𝐹. The cost for this is again in 𝑂(log𝑁). This is continued until 𝐹
is empty, which takes at most 𝑂(𝑁) loops each of cost 𝑂(log𝑁). If the
polyomino has been decomposed, the polyomino is decomposable/con-
structible by the corresponding tile sequence. Otherwise, there cannot
exist such a sequence. A specific start tile can be enforced by prohibiting
the removal of that tile.

8.3.3. Pipelined Assembly

Given that a construction is always possible based on adding locally
convex corners to a partial construction, we can argue that the heuristic
idea of Manzoor et al. [202] for pipelined assembly can be formally
realized for every constructible polyomino: we can transform the con-
struction sequence into a spiral-shaped maze environment, as illustrated
in Figure 8.9. This allows it to produce 𝐷 copies of 𝑃 in 𝑁 + 𝐷 cycles,
implying that we only need 2𝑁 cycles for 𝑁 copies. It suffices to use
a clockwise order of four unit steps (west, north, east, south) in each
cycle.

The main idea is to create a spiral in which the assemblies move from
the inside to the outside. The first tile is provided by an initial south
movement. After each cycle, ending with a south movement, the next
seed tile of the next copy of 𝑃 is added. For every direction corresponding
to the direction of the next tile added by the sequence, we place a tile
depot on the outside of the spiral, with a straight-line path to the location
of the corresponding attachment.

Theorem 8.3.5 Given a construction sequence 𝜎 := ((𝑑1 , 𝑙1) , (𝑑2 , 𝑙2) , . . . ,
(𝑑𝑁−1 , 𝑙𝑁−1)) that constructs a polyomino 𝑃, we can construct a maze
environment for pipelined tilt assembly, such that constructing 𝐷 copies of 𝑃
needs 𝑂 (𝑁 + 𝐷) unit steps. In particular, constructing one copy of 𝑃 can be
done in amortized time 𝑂(1).

Proof. Consider the construction sequence 𝜎, the movement sequence
� consisting of 𝑁 repetitions of the cycle (𝑤, 𝑛, 𝑒, 𝑠), and an injective
function 𝑚 : 𝜎→ �, with 𝑚((𝑤, ·)) = 𝑒, 𝑚((𝑛, ·)) = 𝑠, 𝑚((𝑒 , ·)) = 𝑤 and
𝑚((𝑠, ·)) = 𝑛. We also require that 𝑚((𝑑𝑖 , 𝑙𝑖)) = � 𝑗 if for all 𝑖′ < 𝑖 there is
a 𝑗′ < 𝑗 with 𝑚((𝑑𝑖′ , 𝑙𝑖′)) = � 𝑗′ and 𝑗 is the smallest possible. This implies
that in each cycle there is at least one tile in 𝜎 mapped to one direction in
this cycle.

Labyrinth construction: The main part of the labyrinth is a spiral as can
be seen in Figure 8.9. Consider a spiral that is making |� | many
turns, and the innermost point 𝑞 of this spiral. From 𝑞 upwards,
we make a lane through the spiral until we are outside the spiral.
At this point we add a depot of tiles, such that after each south
movement a new tile comes out of the depot (this can easily be
done with bottleneck constructions as seen in Figure 8.9). Then, we
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Figure 8.9.: (a) A polyomino 𝑃. Shown is the construction sequence and the direction of attachment to the seed (tile 0). (b) A depot
(orange; light gray area in grayscale) having loops to delay the tile output and a bottleneck (purple; dark gray area in grayscale) to
guarantee that only one tile can move to the spiral. (c to f) A maze environment for pipelined construction of the desired polyomino 𝑃.
After the fourth cycle, each further cycle produces a new copy of 𝑃. Shown states are after a sequence of down (c), left (d), up (e) and
right (f) moves.
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0 1 0 1

Figure 8.10.: Two different sequences.
The red tile represents the bounding box
of the current polyomino. (Left) A de-
sired sequence. The latitude intersects
the bounding box. (Right) A sequence
where the latitude does not intersect the
bounding box.

proceed for each turn in the spiral as follows: For the 𝑗-th turn, if
𝑚−1(� 𝑗) is empty we do nothing. Else if 𝑚−1(� 𝑗) is not empty we
want to add the next tile. Let 𝑡𝑖 be this particular tile. Then, we
construct a lane in direction −� 𝑗 , i.e., the direction from where the
tile will come from, until we are outside the spiral. By shifting this
line in an orthogonal direction we can enforce the tile to fly in at
the correct position relating to 𝑙𝑖 . There, we add a depot with tiles,
such that the first tile comes out after 𝑗 − 1 steps and with each
further cycle a new tile comes out (this can be done by using loops
in the depot, see Figure 8.9). Depots, which lie on the same side of
the spiral, can be shifted arbitrarily, so they do not collide. These
depots can be made arbitrarily big, and thus, we can make as many
copies of 𝑃 as we wish. Note that we can make the paths in the
spiral big enough, such that after every turn the bounding box of
the current polyomino fits through the spiral.

Correctness: We will now show that we will obtain copies of 𝑃. Consider
any 𝑗-th turn in the spiral, where the 𝑖-th tile 𝑡𝑖 is going to be
added to the current polyomino. With the next step, both 𝑡𝑖 and
the polyomino move in direction � 𝑗 . While the polyomino does not
touch the next wall in the spiral, the distance between 𝑡𝑖 and the
polyomino will not decrease. However, when the polyomino hits
the wall, the polyomino stops moving and 𝑡𝑖 continues moving
toward the polyomino. Wall-hitting is the same situation as in our
non-parallel model: To a fixed polyomino we can add tiles from 𝑛,
𝑒, 𝑠 or 𝑤. Therefore, the tile connects to the correct place. Since this
is true for any tile and any copy, we conclude that every polyomino
we build is a copy of 𝑃.

Time: Since the spiral has at most 4𝑁 unit steps (or 𝑁 cycles), the first
polyomino will be constructed after 4𝑁 unit steps. By construction,
we began the second copy one cycle after beginning the first copy,
the third copy one cycle after the second, and so on. This means,
after each cycle, when the first polyomino is constructed, we obtain
another copy of 𝑃. Therefore, for𝐷 copies we need𝑁 +𝐷 cycles (or
𝑂(𝑁 + 𝐷) unit steps). For 𝐷 ∈ Ω(𝑁) this results in an amortized
constant time construction for 𝑃.

Note that this proof only considers construction sequences in the follow-
ing form:

If a tile 𝑡𝑖 increases the side length of the bounding box of the current
polyomino, then the tile is added from a direction with a longitude/lati-
tude, such that the longitude/latitude intersects the bounding box (see
Figure 8.10). In the case there is a tile, such that the longitude/latitude
does not intersect the bounding box, then we can rotate the direction
by 𝜋

2 toward the polyomino, and we will have a desired construction
sequence.

8.3.4. Error Detection

During the pipelined creation process, errors may occur as tiles get stuck at
wrong places or do not stick at the right places. In this section, we consider
dynamic workspaces that are composed of rigid obstacles and moving cams
for sorting polyominoes and detecting errors. Cams are affected by the
global controls in the same manner that input polyominoes are. However,
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Figure 8.11.: A completely filled poly-
omino, its lower, upper, left and right
envelope (bold), the corresponding base-
lines (dotted) and the distance between
lower baseline and lower envelope.

they must not enter the input region or any output region. Moreover,
we require the sorting or error reporting process to be repeatable; i.e.,
applying our control sequence must return the workspace to a state that
can be used to sort the next incoming polyomino. Using such a workspace,
we are able to identify and compare completely filled polyominoes, where a
polyomino is called completely filled if and only if it consists of all tiles that
are below its upper envelope, above its lower envelope, right of its left
envelope and left of its right envelope. The lower baseline of a completely
filled polyomino is the horizontal line through its lowest points; see
Figure 8.11. Upper, left and right baselines are defined analogously.

Theorem 8.3.6 Dynamic workspaces can sort any family Fof polyominoes
of width up to 𝑤 and height up to ℎ that are completely filled with a sorting
sequence of constant length and a workspace of dimensions O(|F| · 𝑤 · ℎ) ×
O(|F| · 𝑤 · ℎ).

Proof. In the following, we describe how to construct a workspace that
sorts a given family Fof completely filled polyominoes with a control se-
quence of constant length. You can get an intuition of the construction us-
ing the interactive visualization applet https://roboticswarmcontrol.
github.io/TiltSorting/index.html. In a first step, our procedure
groups the polyominoes from Faccording to their height and width;
we handle each group separately. Therefore, we assume in the following
that all polyominoes have the same width 𝑤 and height ℎ. Our sorting
procedure checks the left, right, lower and upper envelope separately.
For each envelope, constantly many operations are required; therefore,
the entire procedure only requires constantly many operations. The main
idea of sorting the right envelope is as follows; the construction for the
other envelopes is analogous. We use a set of pins, one for each row of
the polyomino. To sort a polyomino, the pins are pushed against the
polyomino from the right. The pins consist of several stages, each stage
corresponding to a certain envelope to be tested for. If the envelope
matches, a set of interlocking cams called the plug unlocks and can be
moved to the top, thereby extending a barrier that we then use to move
the polyomino to the right position. Refer to Figure 8.12 for an example
of the construction.

In the following, we describe the construction in more detail. Firstly,
our construction requires a distance of three between successive rows;
therefore, as a first technical step, we use one expansion cam per row as
depicted in Figure 8.12 to introduce additional vertical space. These cams
can move left and right independently of each other; therefore, they copy
the right envelope of the polyomino they are pushed up against. This
requires O(𝑤 · ℎ) space, because there must be a horizontal distance of at
least 𝑤 between the vertical parts of each expansion cam to allow them
to move horizontally without influencing each other. To the right of the
expansion cams, there is one stage for each right envelope 𝐸 in F. At the
left end of each stage, there is a horizontal driver cam for each row of
the polyomino. Let 𝑑 𝑗 be the distance between the right envelope and
baseline in row 𝑗, and let 𝑑′

𝑗
be the distance between right envelope and

baseline in row 𝑗 in the previous stage, or 0 for the first stage. Note that
due to the polyomino having width 𝑤, for at least one 𝑗 we have 𝑑 𝑗 = 0.
The driver in row 𝑗 has width 3𝑤 + 𝑑 𝑗 − 𝑑′𝑗 . When we push all rows left

https://roboticswarmcontrol.github.io/TiltSorting/index.html
https://roboticswarmcontrol.github.io/TiltSorting/index.html
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Figure 8.12.: Example of our construction that classifies polyominoes based on their right envelope. Using the control sequence �������
moves the red polyomino 𝑃 (bottom left) out of an exit at the top depending on its right envelope. Afterward, the sequence ���� resets
the cams in the workspace to their initial state. The right envelope of 𝑃 matches the second stage and is moved to the corresponding exit
(top center); the first stage is matched by a 6 × 3-rectangle, matching polyominoes leave through the first exit (top left). Any polyominoes
with other envelopes leave through the last exit (top right). See https://roboticswarmcontrol.github.io/TiltSorting/index.html for an
interactive visualization applet.
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Figure 8.13.: Dimensions of interlocking
cams used in our construction; each stage
contains one of these cams for each row
of the polyomino.

against the polyomino, this ensures that the ends of all drivers are at the
same width if and only if its right envelope is 𝐸. We prevent any vertical
motion of the drivers using rigid obstacles placed between the stages.
Right of the drivers of each stage we place the plug of the stage. The plug
consists of one interlocking cam of height 3 for each row; see Figure 8.13
for its dimensions.

The parts of each plug can move horizontally according to the right
envelope of the polyomino without blocking each other. However, if
one of the cams is blocked w.r.t. motion to the top, it blocks all other
cams. Let 𝑦⊤ , 𝑦⊥ be the leftmost and rightmost column of the plug if the
polyomino has right envelope 𝐸. On the upper side of each stage, there
is a horizontal wall of rigid obstacles with a window from 𝑦⊥ to 𝑦⊤. On
the bottom of each stage, we add a horizontal wall of rigid obstacles with
windows of width one at 𝑦⊥ and 𝑦⊤ and two vertical barriers extending
through these windows. The barriers are long vertical cams that are

https://roboticswarmcontrol.github.io/TiltSorting/index.html
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fixed at their bottom end as depicted in Figure 8.12 and cannot move
horizontally; they can only move to the top if the interlocking cams are
all at the same, correct width for the current stage, i.e., if the polyomino
has right envelope 𝐸. In this case, the plug can move to the top into a
pocket that prevents any motion other than to the bottom. The barriers
move to the top with the plug, blocking a corridor that the polyomino
travels through; their bottom end stays below the bottom wall of the
stages, ensuring that the construction can be reset by a downward move.
Right of the last stage, there is one more group of drivers that are held in
place by narrow horizontal pockets; see Figure 8.12.

8.4. Optimization Variants in 2D

For polyominoes that cannot be assembled, it is natural to look for a
maximum-size subpolyomino that is constructible. This optimization
variant is polyAPX-hard, i.e., we cannot hope for an approximation
algorithm with an approximation factor within Ω(𝑁 1

3 ), unless P = NP.

Definition 8.4.1 (Maximum Tilt Assembly Problem) Given a polyomino
𝑃, the Maximum Tilt Assembly Problem (MaxTAP) asks for a sequence of
tiles building a cardinality-maximal connected subpolyomino 𝑃′ ⊆ 𝑃.

Theorem 8.4.1 MaxTAP is polyAPX-hard, even for tree-shaped polyominoes.

Proof. We reduce Maximum Independent Set (MIS) to MaxTAP; see
Figure 8.14 for an illustration. Consider an instance 𝐺 = (𝑉, 𝐸) of MIS,
which we transform into a polyomino 𝑃𝐺. We construct 𝑃𝐺 as follows.
First, construct a horizontal line from which we go down to select which
vertex in 𝐺 will be chosen. The line must have length 10𝑛 − 9, where
𝑛 = |𝑉 |. Every 10th tile will represent a vertex, starting with the first
tile on the line. Let 𝑡𝑖 be such a tile representing vertex 𝑣𝑖 . For every
𝑣𝑖 we add a selector gadget below 𝑡𝑖 and for every {𝑣𝑖 , 𝑣 𝑗} ∈ 𝛿(𝑣𝑖) we
add a reflected selector gadget below 𝑡 𝑗 , as shown in Figure 8.14, each
consisting of 19 tiles. Note that all gadgets for selecting vertex 𝑣𝑖 are
above the gadgets of 𝑣 𝑗 if 𝑖 < 𝑗 and that there are at most 𝑛2 such gadgets.
After all gadgets have been constructed, we have already placed at most
19𝑛2+10𝑛−9 ≤ 29𝑛2 tiles. We continue with a vertical line with a length
of 30𝑛2 tiles.

Figure 8.14.: Reduction from MIS to Max-
TAP. (Left) A graph 𝐺 with four vertices.
(Right) A polyomino constructed for the
reduction with a feasible, maximum so-
lution marked in gray.
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Now, let 𝛼∗ be an optimal solution to MIS. Then MaxTAP has a maximum
polyomino of size at least 30𝑛2𝛼∗ and at most 30𝑛2𝛼∗ + 29𝑛2: We take the
complete vertical part of 𝑡𝑖 for every 𝑣𝑖 in the optimal solution of MIS.
Choosing other lines block the assembly of further lines and thus, yields
a smaller solution.

Now suppose we had an 𝑁1−�-approximation for MaxTAP. Then we
would have a solution of at least 1

𝑁1−�𝑇
∗, where 𝑇∗ is the optimal solu-

tion. We know that an optimal solution has 𝑇∗ ≥ 30𝑛2𝛼∗ tiles and the
polyomino has at most 𝑁 ≤ 30𝑛3 + 29𝑛2 ≤ 59𝑛3 tiles. Therefore, we have
at least 30𝑛2𝛼∗

591−�𝑛3−3� tiles and thus at least 1
591−�𝑛3−3� 𝛼

∗ strips, because each
strip is 30𝑛2 tiles long. Consider some � ≥ 2

3 + � for any � > 0, then the
number of strips is 1

591/3𝑛1−3� 𝛼
∗ which results in an 𝑛1−𝛿-approximation

for MIS, contradicting the inapproximability of MIS (unless P=NP) shown
by Berman and Schnitger [229].

As a consequence of the construction, we get Corollary 8.4.2.

Corollary 8.4.2 Unless P = NP, MaxTAP cannot be approximated within a
factor of Ω(𝑁 1

3 ).

On the positive side, we can give an 𝑂(
√
𝑁)-approximation algorithm

for tree-shaped polyominoes.

Theorem 8.4.3 The longest constructible path in a tree-shaped polyomino
𝑃 is a

√
𝑁-approximation for MaxTAP, and we can find such a path in

polynomial time.

Proof. Consider an optimal solution 𝑃∗ and a smallest enclosing box 𝐵
containing 𝑃∗. Then there must be two opposite sides of 𝐵 touching at
least one tile of 𝑃∗. Consider the path 𝑆 between both tiles. Because (i) the
area 𝐴𝐵 of 𝐵 is at least the number of tiles in 𝑃∗, (ii) |𝑆 | ≥

√
𝐴𝐵, and (iii) a

longest, constructible path in 𝑃 has length at least |𝑆 |, we conclude that
the longest constructible path is a

√
𝑁-approximation.

To find such a path, we can search for every path between two tiles,
check whether we can build this path, and take the longest, constructible
path.

Checking constructibility for 𝑂(𝑁2) possible paths is rather expensive.
However, we can efficiently approximate the longest constructible path
in a tree-shaped polyomino with the help of sequentially constructible
paths, i.e., the initial tile is a leaf in the final path.

Theorem 8.4.4 We can find a constructible path in a tree-shaped polyomino
in 𝑂(𝑁2 log𝑁) time that has a length of at least half the length of the longest
constructible path.

Proof. We only search for paths that can be built sequentially. Clearly, the
longest such path is at least half as long as the longest path that can have
its initial tile anywhere. We use the same search tree technique as before
to look for blocking tiles. Select a tile of the polyomino as the initial tile.
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Figure 8.15.: A subpath𝑊′ and its short-
cut 𝐿 in green. To block 𝐿, 𝐴 and 𝐵 must
exist. But then, either 𝑝0 or 𝑝1 (red tiles)
will also be blocked. Therefore, also𝑊′
cannot be built.

Do a depth-first search and for every tile in this search, check if it can
be added to the path. If it cannot be added, skip all deeper tiles, as they
also cannot be added. During every step in the depth-first search, we
only need to change a single tile in the search trees, doing 𝑂(1) updates
with 𝑂(log𝑁) cost. As we only consider 𝑂(𝑁) vertices in the depth-first
search, this results in a cost of 𝑂(𝑁 log𝑁) for a fixed start tile. It is trivial
to keep track of the longest such constructible path. Repeating this for
every tile results in a running time of 𝑂(𝑁2 log𝑁).

In tree-shaped polyominoes, finding a constructible path is easy. For
simple polyominoes, additional arguments and data structures lead to a
similar result.

Theorem 8.4.5 In simple polyominoes, finding the longest of all shortest
paths that are sequentially constructible takes 𝑂(𝑁2 log𝑁) time.

Before we start with the proof of Theorem 8.4.5, we show in the next
two lemmas that it is sufficient to consider shortest paths only, and that
we can restrict ourselves to one specific shortest path between two tiles.
Hence, we just need to test a maximum of 𝑂(𝑛2) different paths.

Lemma 8.4.6 In a sequentially constructible path, if there is a direct straight
connection for a subpath, the subpath can be replaced by the straight connection.

Proof. Consider a sequentially constructible path 𝑊 and a subpath
𝑊 ′ ⊂ 𝑊 that has a straight line 𝐿 connecting the start point and the
endpoint of 𝑊 ′. W.l.o.g., 𝐿 is a vertical line and we build from bottom
to top. Assume that (𝑊\𝑊 ′) ∪ 𝐿 is not constructible. Then at least two
structures (which can be single tiles) 𝐴 and 𝐵 must exist, preventing
us from building 𝐿. Furthermore, these structures have to be connected
via a path (𝐴𝐵 or 𝐵𝐴, see Figure 8.15). We observe that none of these
connections can exist or otherwise, we cannot build𝑊 (if 𝐴𝐵 exist, we
cannot build the last tile 𝑝0 of 𝐿; if 𝐵𝐴 exist, we cannot build the first tile
𝑝1 of𝑊 ′). Therefore, we can replace𝑊 ′ with 𝐿.

By repeating the construction of Lemma 8.4.6 we get a shortest path from
tile 𝑡1 to 𝑡2 in the following form: Let 𝑃1 , . . . , 𝑃𝑘 be reflex tiles on the path
from 𝑡1 to 𝑡2. Furthermore, for every 1 ≤ 𝑖 ≤ 𝑘 − 1, the path from 𝑃𝑖 to
𝑃𝑖+1 is monotone. This property holds for every shortest path, or else we
can use shortcuts as in Lemma 8.4.6.

Lemma 8.4.7 If a shortest path between two tiles is sequentially constructible,
then every shortest path between these two tiles is sequentially constructible.

Proof. Consider a constructible shortest path𝑊 , a maximal subpath𝑊 ′
that is 𝑥-𝑦-monotone, and a bounding box 𝐵 around𝑊 ′. Due to the 𝐿1-
metric, any 𝑥-𝑦-monotone path within 𝐵 is as long as𝑊 ′. Suppose some
path within 𝐵 is not constructible. Then we can use the same blocking
argument as in Lemma 8.4.6 to prove that𝑊 ′ cannot be constructible as
well, contradicting that𝑊 is constructible.
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Using Lemma 8.4.6 and Lemma 8.4.7, we are ready to prove Theo-
rem 8.4.5.

Proof of Theorem 8.4.5. Because it suffices to check one shortest path
between two tiles, we can look at the BFS tree from each tile and then
proceed like we did in Theorem 8.4.4. Thus, for each tile we perform a
BFS in time 𝑂(𝑁) and a DFS with blocking look-ups in time 𝑂(𝑁 log𝑁),
which results in a total time of 𝑂(𝑁2 log𝑁).

Future Work 8.1.

Additive production techniques, like 3D-printing, often use support
structures for building otherwise unstable objects. Can we devise an
approximation algorithm that makes a shape constructible with the
minimum amount of additional tiles?

8.5. Three-dimensional Shapes

An interesting and natural generalization of TAP is to consider three-
dimensional shapes, i.e., polycubes. The local considerations for simply
connected two-dimensional shapes are no longer sufficient. In the fol-
lowing we show that deciding whether a polycube is constructible is
NP-hard. Moreover, it is NP-hard to check whether there is a constructible
path from a start cube 𝑠 to an end cube 𝑡 in a partial shape.

As a stepping stone, we start with a restricted version of the three-
dimensional problem.

Theorem 8.5.1 It is NP-hard to decide if a polycube can be built by inserting
tiles only from above, north, east, south, and west.

x1 x1 x2 x2 x3 x3 x4 x4

x1 _ x2 _ x3

x2 _ x3 _ x4

x1 _ x3 _ x4

n

e

s

w

Figure 8.16.: Top-view on the polycube.
There is a vertical part going south for
the true and false assignment of each vari-
able. We start building at the top layer
(crosshatched area) and have to block
either the true or the false part of each
variable from above. The blocked parts
have to be built with only inserting from
east, west, and south. For each clause, the
parts of the inverted literals are modified
to allow at most two of them being built
in this way. All other parts can simply be
inserted from above in the end.

Proof. We prove hardness by a reduction from 3SAT. A visualization
for the formula (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥3 ∨ 𝑥4) can be
seen in Figure 8.16. It consists of two layers of interest (and some further
auxiliary ones for space and forcing the seed tile by using the one-way
gadget shown in Figure 8.19). Due to the one-way gadget, at least part
of the top layer (crosshatched area in Figure 8.16, details in Figure 8.17)
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Figure 8.17.: Top-view on the polycube.
In the beginning we have to block the
access from the top for either the true or
false part of the variable. The variable is
assigned the blocked value. x1

true false

true false
x2

must be built first. Forcing a specific start tile can be done by a simple
construction. For each variable we have to choose to block the left (for
assigning true) or the right (for assigning false) part of the lower layer. In
the end, the remaining parts of the upper layer can trivially be filled from
above. The blocked parts of the lower layer then have to be built with
only inserting tiles from east, south, or west. In the end, the non-blocked
parts can be filled in from above. For each clause we use a part (as shown
in Figure 8.18) that allows only at most two of its three subparts to be
built from the limited insertion directions. We attach these subparts
to the three variable values not satisfying the clause, i.e., the negated
literals. This forces us to leave at least one negated literal of the clause
unblocked, and thus at least one literal of the clause to be true. Overall,
this allows us to build the blocked parts of the lower layers only if the
blocking of the upper level corresponds to a satisfying assignment. If we
can build the true and the false parts of a variable in the beginning, any
truth assignment for the variable is possible.

Figure 8.18.: Three gadgets for a clause.
Only two of them can be built if the tiles
are only able to come from the east, south,
and west.

It is straightforward to see that the whole construction fits into a bounding
box of size 𝑂(|𝐶 |) × 𝑂(|𝑉 |) × 𝑂(1), where 𝐶 is the set of all clauses and
𝑉 the set of all variables.

Figure 8.19.: (Left) This polyomino can
only be constructed by starting at “in”
and ending at “out”. (Right) Generaliza-
tion to three dimensions. If we start on
the right side, then we cannot build the
red cube because it is blocked from all
six directions. With these gadgets we can
enforce a seed tile.

in out

(a) (b)

The construction can be extended to assemblies with arbitrary direction.

Theorem 8.5.2 It is NP-complete to decide if a polycube can be built by
inserting tiles from any direction.

Proof. We add an additional layer below the construction in Theorem 8.5.1
that has to be built first and blocks access from below. Forcing the bottom
layer to be built first can again be done with the one-way gadget shown
in Figure 8.19. Finally, we note that the problem of deciding whether a
polycube can be built by inserting tiles from any direction is in NP.
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The difficulties of construction in 3D are highlighted by the fact that
even identifying constructible connections between specific positions is
NP-hard.

Theorem 8.5.3 It is NP-complete to decide whether a path from one tile to
another can be built in a general polycube.

A
N
D

x1 x2 x3 x4

(a)

x1 x3

x4x2
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t
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Figure 8.20.: (Left) Circuit representation
for the SAT formula (𝑥1∨𝑥2∨𝑥3)∧(𝑥1∨
𝑥2∨𝑥4)∧(𝑥2∨𝑥3∨𝑥4)∧(𝑥1∨𝑥3∨𝑥4)∧
(𝑥1 ∨ 𝑥2 ∨ 𝑥4). (Right) Reduction from
SAT formula. Boxes represent variable
boxes.

Proof. We prove NP-hardness by a reduction from SAT. For each variable
we have two vertical lines, one for the true setting, one for the false setting.
Each clause gets a horizontal line and is connected with a variable if
it appears as literal in the clause, see Figure 8.20a. We transform this
representation into a tour problem where, starting at a point 𝑠, one first
has to go through either the true or false line of each variable and then
through all clause lines, see Figure 8.20b. The clause part is only passable
if the path in at least one crossing part (squares) does not cross, forcing
us to satisfy at least one literal of a clause. As one has to go through all
clauses, 𝑡 is only reachable if the selected branches for the variables equal
a satisfying variable assignment for the formula.

We now consider how to implement this as a polycube. The only difficult
part is to allow a constructible clause path if there is a free crossing.

Figure 8.21.: Empty variable box.

In Figure 8.21, we see a variable box that corresponds to the crossing of
the variable path at the squares in Figure 8.20b. It blocks the core from
further insertions. The clause path has to pass at least one of these variable
boxes in order to reach the other side. See Figure 8.22 for an example.
Note that the corresponding clause parts can be built by inserting only
from above and below, so there are no interferences.

Figure 8.22.: A clause line (blue dark
gray in grayscale) dips into a variable
box. If the variable box is built, then we
cannot build the dip of the clause line.

Future Work 8.2.

Can we decide in polynomial time if simple types of polycubes can
be constructed, e.g., polycubes that can be iteratively cut into exactly
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Figure 8.23.: Backtracking in this non-
constructible polyomino is difficult.

two connected components by straight cuts?

8.6. Computational Study

In this section, we implement a solver which can compute a feasible
construction sequence, or prove non-constructability, for arbitrary poly-
ominoes and polycubes. We know that deciding constructability for
polycubes is NP-complete, so we cannot expect an efficient algorithm.
Of course, we can easily devise construction heuristics, but to prove
that something is not possible is much harder. The naïve approach is to
perform an exhaustive search of all possible construction sequences. This
will fail even for relatively small instances as there are simply too many
possibilities. Backtracking approaches can be much more efficient, so let
us first take a look at such an approach and explain its limitations.

The general idea of backtracking is to traverse the decision tree and try to
detect conflicts as early as possible (and not just at the end of the decision
tree). An example of such a conflict is when an empty position of the
polyomino/polycube gets cut off by the already-constructed part and
cannot be filled anymore. This can be detected very quickly since in each
step, only a small part of the instance can be influenced. When we detect
such a conflict, we try to jump back as far as possible to the point were
the conflict originated, as all further decisions are inherently doomed to
failure. If a polyomino is not constructible, the conflict originates from the
beginning, but this is hard to detect. In Figure 8.23 we see a backtracking
algorithm which just placed the 24th tile and detects a conflict: the tile
with the red ‘?’ becomes unreachable. We can trivially jump back to the
20th tile, but we have an exponential number of possibilities to reach it.
Especially the blue part can be heavily varied before we have exhausted
all options. Thus, we need a more refined way to detect earlier that this
polyomino cannot be built. As the polyomino is actually hole-free, this is
trivially possible (Theorem 8.3.4), but for a polyomino with holes, this is
far more difficult.

Instead of trying to find a set of clever heuristics for detecting conflicts,
which involves a lot of theoretical work and practical engineering, we use
already existing generic conflict detection techniques by transforming the
problem into a SAT-formula and a constraint program. We first describe
how to formulate our problem as a SAT-problem in Subsection 8.6.1.
Afterward, we formulate it as a constraint program which allows more
powerful expressions, in Subsection 8.6.2, but is also based on SAT
(using CP-SAT). A computational evaluation of the practicality of these
approaches is then performed in Subsection 8.6.3. A description of how
the corresponding solvers work is provided in Section 3.4.3 (How Does
CP-SAT Work?) on page 65.

8.6.1. Solving as SAT-Formula

We now discuss how we can express the constructability of a polyomino or
polycube as a Boolean formula, i.e., a SAT-problem. The most significant
decision we have to make is ‘which tile do we place before which?’. For
any two tiles 𝑡 , 𝑡′ ∈ 𝑃, let 𝑋𝑡<𝑡′ = 𝑋𝑡′<𝑡 ∈ 𝔹 denote that 𝑡 is built before 𝑡′.
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We can actually deduce everything else from these variables but to make
things easier to read and clauses shorter, let us introduce some further
variables.

We denote with 𝑆𝑡 ∈ 𝔹 if 𝑡 ∈ 𝑃 is the first tile. We can only have one first
tile, thus, we have to add the clauses

∀𝑡 ≠ 𝑡′ ∈ 𝑃 : 𝑆𝑡 ⇒ 𝑆𝑡′ (8.1)

If the SAT-solver supports native cardinality constraints, we can also state∑
𝑡∈𝑃 𝑆𝑡 = 1.

Every tile 𝑡 ∈ 𝑃 that is not built first, needs to be built from one direction
and have an adjacent tile 𝑡′ ∈ 𝑁(𝑡) to dock to, i.e., 𝑋𝑡′<𝑡 = true. Let
𝐷𝑜
𝑡 denote that 𝑡 is build from direction 𝑜 and 𝑂 be the set of possible

directions (𝑛, 𝑒, 𝑠, and 𝑤 for polyominoes; polycubes additionally have
top and bottom). This results in

∀𝑡 ∈ 𝑃 : 𝑆𝑡 ∨
∨
𝑜∈𝑂

𝐷𝑜
𝑡 (8.2)

and
∀𝑡 ∈ 𝑃 : 𝑆𝑡 ⇒

∨
𝑡′∈𝑁(𝑡)

𝑋𝑡′<𝑡 . (8.3)

We can also transform the first constraint into a cardinality constraint.
This is actually redundant, but in some cases such redundancies can
drastically speed up the solver.

If tile 𝑡 ∈ 𝑃 is built from direction 𝑜 ∈ 𝑂, all blocking tiles in that direction
of course have to be built later. Let B𝑜(𝑡) ⊆ 𝑃 denote this blocking set.

∀𝑡 ∈ 𝑃, 𝑜 ∈ 𝑂, 𝑡′ ∈ B𝑜(𝑡) : 𝐷𝑜
𝑡 ⇒ 𝑋𝑡<𝑡′ (8.4)

This already describes our problem pretty well: we enforce that a tile has
something to dock to when built, and that nothing blocks it. However,
the order, i.e., the 𝑋-variables, can still be inconsistent, i.e., contain cycles.
To prevent this, we have to enforce transitivity. This can easily be done
by

∀𝑡0 ≠ 𝑡1 ≠ 𝑡2 ∈ 𝑃 : 𝑋𝑡0<𝑡1 ∧ 𝑋𝑡1<𝑡2 ⇒ 𝑋𝑡0<𝑡2 . (8.5)

This creates a cubic number of clauses which does not scale very well.

To reduce the number of clauses, we can also add them lazily whenever
the returned solution violates one. Many SAT-solver support iterative
construction and solving of formulas, i.e., variables and clauses can be
added to a solved formula. The clauses and weights already learned are
reused, thus, it continues where it stopped (comparable to the commonly
used callback in a MIP-solver).

For a lazy construction, we start with all constraints except the ones in
Equation 8.5, and solve the formula. Additionally, some 𝑋-variables,
which do not appear in any clauses, are left out. If the formula is infeasible,
we can stop searching, because adding clauses cannot make the model
feasible again. If, on the other hand, we have an assignment, we need
to look for violations of the constraints in Equation 8.5. For this, we
first check if there is some 𝑋𝑡0<𝑡1 ∧ 𝑋𝑡1<𝑡2 ∧ 𝑋𝑡2<𝑡0 and directly add a
corresponding clause preventing this assignment. This check can be
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executed quickly using appropriate data structures. Because not all 𝑋-
variables are already contained, we also need to look for larger cycles.
This is more costly and, thus, we only need to perform this action if we
have not found any conflicts beforehand. For a larger cycle, we add all
transitivity constraints for all triples within it.

8.6.2. Constraint Programming

We saw that we may need a cubic number of constraints when encoding
the ordering of the assembly sequence as a Boolean relationship. Con-
straint programming allows us to encode this ordering as integral values
that are already transitive by design. Let 𝐼𝑡 ∈ ℕ |𝑃 |−1

0 describe the position
of tile 𝑡 ∈ 𝑃 in the assembly sequence. To make this assignment unique,
we only need to add the single constraint

AllDifferent(𝐼𝑡 | 𝑡 ∈ 𝑃). (8.6)

We reuse the 𝐷- and 𝑆-variables from the SAT-formulation. To make sure
every tile (except the first tile) has a direction, we can add the constraint

∀𝑡 ∈ 𝑃 :
∑
𝑜∈𝑂

𝐷𝑜
𝑡 = 1 − 𝑆𝑡 . (8.7)

In this case, we again have to make sure that the tile can actually dock to
something.

∀𝑡 ∈ 𝑃 : min
𝑡′∈𝑁(𝑡)

𝐼𝑡′ ≤ 𝐼𝑡 − 1 if 𝑆𝑡 (8.8)

And finally, there should be no blocking tiles.

∀𝑡 ∈ 𝑃, 𝑜 ∈ 𝑂 : min
𝑡′∈B𝑜 (𝑡)

𝐼𝑡′ ≥ 𝐼𝑡 + 1 if 𝐷𝑜
𝑡 (8.9)

This formulation needs significantly fewer constraints (linear instead of cu-
bic) and variables (linear instead of quadratic) than the SAT-formulation.
This does not necessarily imply that it is also faster, because the con-
straints are more complex. Also, the employed solver CP-SAT implicitly
converts the variables into Boolean variables. The used encoding, as
explained in Section 3.4.3 (How Does CP-SAT Work?) on page 65, also
uses a quadratic number of variables in the worst case (lazy creation).

8.6.3. Evaluation

In this section, we evaluate the performance of the SAT-formulation with
multiple SAT-solvers, and the performance of the CP-formulation with
CP-SAT of Google’s ortools [70]. Before we can run any experiments
though, we first need to create some instances. This is not trivial because
most random instances are constructible, and furthermore are often
constructible using simple heuristics. To have the best chance of creating
non-constructible instances, we start with a random variant of the spiral
in Figure 8.2. Then we randomly select a tile and extend it in a random
direction. To make the instance more ramified, we can add multiple
tiles in that same direction. By making the selection probability of a tile
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linearly dependent on the number of free sides, we increase the chance of
creating spirals further. A sample of the resulting instances can be seen
in Figure 8.28.

We compare the following SAT-solver packaged by PySat [230] with a
uniform interface:

▶ Glucose (3.0 and 4.1) [231]
▶ Maplesat (MapleCOMSPS_LRB) [232]
▶ Mergesat (3.0) [233]
▶ Minisat (2.2 release and GitHub version) [234]

While some of the solvers support native cardinality constraints or have
variants that do, we leave this part to future work.

Future Work 8.3.

Can we improve the performance further by using native cardinality
constraints or adding fewer constraints when using lazy constraints?

Let us first decide which formulation and approach is the fastest. Since
we have a set of SAT-solvers, we always select the best solver for the
corresponding instance. The SAT-solvers themselves are compared later.
The plot in Figure 8.24a shows an inferior performance of constraint
programming and SAT with all clauses added from the beginning. They
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Figure 8.24.: Runtime comparison of in-
stance size for CP and SAT. For the SAT-
variants, the SAT-solver with the lowest
runtime for this instance has been cho-
sen. The median data point consists of
30 instances. The SAT-solvers with lazy
clause generation perform best as they
only add a fraction of the clauses of the
full formulation.

can still solve instances with over 200 tiles reliably but the runtime
increases quickly. It is important to note that solving the large SAT-
formulas is not the bottleneck; creating the cubic sized formula takes up
most of the time. Creating the formulas via optimized native code would
decrease the runtime drastically. However, the lazy clause generation is
clearly the fastest method. It needs quite a number of iterations and lazy
clauses for some instances. The lazy clauses are actually slower to create
than for the full version because we first have to search for them, but
we still end up with far fewer clauses. This can be seen in Figure 8.24b
showing how many of the original clauses are actually added, which on
average is less than 2.4 %. Surprisingly, small non-constructible instances
need a much higher percentage despite the fact that we can abort for
such an instance as soon as we have added enough clauses to make the
underlying SAT-formula unsatisfiable. Missing transitivity constraints
seem to allow the assignment to evade unsatisfiability to quite some
depth. A reason why this only happens for small instances may be that
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the unsatisfiable spiral comprises a larger fraction of a small instance
than for a large instance. Thus, using a SAT-solver with lazy clauses is
the most efficient solution for this problem.

The SAT-solvers perform nearly equally well for lazy clause generation, as
can be seen in Figure 8.25a. Of the instance set with 1722 instances with
up to 750 tiles each, the solvers were able to solve roughly 66 % within
60 seconds. Only maplesat and mergesat performed worse and solved only
63 %. The minisat-solver (GitHub-version) actually performed best while
being reasonably simple. The advanced features of the other solvers,
building upon minisat, did not yield more instances solved. This indicates
that the corresponding formulas are reasonably easy to solve or disprove,
and that the size is the primary problem.

The implementation could solve instances with around 500 tiles within
the time limit, regardless of whether they are constructible or not. This
can be seen in Figure 8.25b, showing how many instances of which size
could be solved within the time limit by any of the SAT-solvers. The data
for the non-constructible instances is relatively sparse because only 355
of the 1722 instances were non-constructible. Also, the way they were
created possibly made them simpler. Hence, we should be careful with
these observations as they may be biased.

Figure 8.25.: The first plot shows how
many instances have been solved within
60 s using the corresponding SAT-solver
with lazy clause generation. The SAT-
solvers performed nearly equally well, ex-
cept for maplesat and mergesat, which are
slightly weaker. The second plot shows
how many instances of which size have
been solved by any of the SAT-solvers,
split for constructability. At around 500
tiles, instances begin to become unsolv-
able in time for all types.
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For two-dimensional instances, it remains to be seen whether non-simple
polyominoes are NP-hard. For three-dimensional instances, we already
know that they are hard. Thus, it is interesting to evaluate the performance
of the approach for three-dimensional instances as well. The instances
were created similarly as for 2D, except that we do not start with a spiral.
The test bed contained over 600 instances of uniformly distributed size
between 50 and 750 tiles. We can see in Figure 8.26b that the solvable
instance size has decreased slightly but remains above 500. This decrease
can be explained by the slightly larger formulation. The SAT-solver minisat
remains the best solver, as shown in Figure 8.26a. All solved instances
are constructible. Due to the fact that most of the instances could not
be solved in time were large instance, it is not to be expected that they
contain many non-constructible instances. While the extra dimension
makes the problem harder to decide in specific cases, they make random
instances easier to construct.

Future Work 8.4.
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Figure 8.26.: Results for three-
dimensional instances. We can solve
nearly similar-sized instances as for
2D, but we were not able to create any
non-constructible instances. The lines
for constructible and all differ because we
let the solver run longer than the time
limit in the hope of finding out if the
instance is constructible. Instances with
a duration of longer than 60 s have still
been marked as “not solved”.

(a)

(b)

Figure 8.27.: (Top) A polyomino that
cannot be constructed in the basic TAP
model. (Bottom) Construction in a staged
assembly model by putting together sub-
polyominoes.

How can we create harder instances, especially for 3D? We do not yet
know which shape practical instances would be, so harder does not
necessarily mean more realistic. It is still useful to perform this work
and be prepared, in case realistic instances are indeed hard.

Future Work 8.5.

Can we engineer a solver which approximates the desired shape but
always finds an assembly sequence? Approximation can be performed
either like MaxTAP or by adding as few additional tiles as possible.
A combination of both is also imaginable. Such an optimization is
much harder to express as a Satisfiability problem. For this, the
native cardinality constraints may be useful to perform an iterative
search on the number of missing or additional tiles. This can also
be implemented directly with a MAX-SAT-solver which is able to
differentiate between hard and soft constraints.

8.7. Conclusion

We have provided a number of algorithmic results for Tilt Assembly,
and we have engineered a solver based on SAT, but various unsolved
challenges remain. What is the complexity of deciding TAP for non-simple
polyominoes? While Lemma 8.3.3 can be applied to all polyominoes, we
cannot simply remove any locally convex tile. Can we find a constructible
path in a general polyomino from given start- and endpoints? This would
help in finding a

√
𝑁-approximation for non-simple polyominoes. How

can we optimize the total makespan for constructing a shape? And what
options exist for non-constructible shapes?

An interesting approach is to consider a staged assembly, as shown
in Figure 8.27, where a shape gets constructed by putting together
subpolyominoes, instead of adding one tile at a time. This is similar
to staged tile self-assembly [207–209] and provides a path to sublinear
assembly times, as a hierarchical assembly allows massive parallelization.
Based on this approach, Schmidt et al. [235] are able to achieve sublinear
construction time for various types of polyominoes. However, much
future work remains for general polyominoes and polycubes.
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Figure 8.28.: Examples of the random instances for 2D. Instances in red are not constructible.
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This chapter investigates algorithmic approaches for targeted drug
delivery in a complex, maze-like environment, such as the human
vascular system. The basic scenario is given by a large swarm of
micro-scale particles (“agents”) and a particular target region (“tu-
mor”) within a system of passageways. Agents are too small to contain
on-board power or computation and are instead controlled by a global
external force that acts uniformly on all particles, such as an applied
fluidic flow or electromagnetic field. The challenge is to deliver all
agents to the target region with a minimum number of actuation steps.
We show hardness of the underlying problem, provide algorithms
with performance guarantees, and computationally evaluate them as
well as heuristics based on local search and deep reinforcement learn-
ing. The approach based on deep reinforcement learning significantly
outperforms the classical approaches in these experiments.

9.1. Introduction

A crucial challenge for a wide range of vital medical problems, such
as the treatment of cancer, localized infections and inflammation, or
internal bleeding is to deliver active substances to a specific location in an
organism. The traditional approach of administering a sufficiently large
supply of these substances into the circulating blood may cause serious
side effects, as the outcome intended for the target site may also occur
in other places, with often undesired, serious consequences. Moreover,
novel custom-made substances that are specifically designed for precise
effects are usually in too short supply to be generously poured into the
blood stream. In the context of targeting brain tumors (see Figure 9.1), an
additional difficulty is the blood-brain barrier. This makes it necessary to
develop other, more focused methods for delivering agents to specific
target regions.

Given the main scenario of medical applications, this requires dealing
with navigation through complex vascular systems, in which access to a
target location is provided by pathways (in the form of blood vessels)
through a maze of obstacles. However, the microscopic size of particles
necessary for passage through these vessels makes it prohibitively difficult
to store sufficient energy in suitably sized microrobots, in particular in
the presence of flowing blood.

A promising alternative is offered by employing a global external force,
e.g., a fluidic flow or an electromagnetic field. When such a force is
applied, all particles move in the same direction by the distance, unless
they are blocked by obstacles in their way. While this makes it possible
to move all particles at once, it introduces the difficulty of using uniform
forces for many particles in different locations with different local topology

∗ This chapter is based on [10] with full proofs. The reinforcement learning approach has
been designed from scratch, and the experimental evaluation has been updated.
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Figure 9.1.: (Left) An MRI image of a
brain tumor (marked by the red circle),
located in the cerebellum. (Right) How
can the swarm of particles (indicated by
yellow dots) be delivered to the target
region?

to navigate them to one final destination. In this chapter, we investigate
how this objective can be achieved with few actuator steps.

Previous work [22] described a basic approach that delivers all particles
in a grid environment with 𝑛 grid cells to a target in at most 𝑂(𝑛3)
actuator steps. This shows that delivery can always be achieved; however,
a delivery time of this magnitude is usually impractical, which is why
we investigate possible improvements.

9.1.1. Overview

We discuss a number of insights:

▶ We prove that minimizing the length of a command sequence for
gathering all particles is NP-hard, even for environments that consist
of grid cells in the plane, so no polynomial-time algorithms can be
expected. This explains the observed difficulty of the problem and
also implies hardness for the related localization problem.

▶ We develop an algorithmic strategy for gathering all particles with
a worst-case guarantee of at most𝑂(𝑘𝐷2) steps; here𝐷 denotes the
maximum distance between any two points of the environment and
𝑘 the number of its convex corners. Both 𝑘 and 𝐷 are usually much
smaller than the number 𝑛 of grid locations in the environment:
𝑛 may be in Ω(𝐷2), for two-dimensional and in Ω(𝐷3) for three-
dimensional environments.

▶ For the special case of hole-free environments, we can gather all
particles in 𝑂(𝑘𝐷) steps.

▶ We successfully apply deep learning to search for short command
sequences in individual, complex instances.

▶ We perform a simulation study of the various approaches, evaluat-
ing the respective performance for application-inspired instances.

9.1.2. Related Work

This chapter seeks to understand control for large numbers of microrobots,
and uses a generalized model that could apply to a variety of drug-
carrying microparticles. An example are particles with a magnetic core
and a catalytic surface for carrying medicinal payloads [236, 237]. An
alternative are aggregates of superparamagnetic iron oxide microparticles,
9 �m particles that are used as a contrast agent in MRI studies [238].
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Real-time MRI scanning can allow feedback control using the location of
a swarm of these particles.

Steering magnetic particles using the magnetic gradient coils in an MRI
scanner was implemented in [236, 239]. 3D Maxwell-Helmholtz coils are
often used for precise magnetic field control [238]. Still needed are motion
planning algorithms to guide the swarms of robots through vascular
networks. To this end, we build on the techniques for controlling many
simple robots with uniform control inputs presented in [201, 214, 240]; see
video and abstract [241] for a visualizing overview. For a recent survey
on challenges related to controlling multiple microrobots (less than 64
robots at a time), see [242]. Further related work includes assembling
shapes by global control (e.g., see [8, 243]) or rearranging particles in a
rectangle of agents in a confined workspace [244, 245].

As the underlying problem consists of bringing together a number of
agents in one location, a highly relevant algorithmic line of research
considers rendezvous search, which requires two or more independent,
intelligent agents to meet. Alpern and Gal [246] introduced a wide range of
models and methods for this concept as have Anderson and Fekete [247]
in a two-dimensional geometric setting. Key assumptions include a
bounded topological environment and robots with limited onboard
computation. This is relevant to maneuvering particles through worlds
with obstacles and implementation of strategies to reduce computational
burden while calculating distances in complex worlds [248]. In a setting
with autonomous robots, these can move independent of each other, i.e.,
follow different movement protocols, called asymmetric rendezvous in
the mathematical literature [246]. If the agents are required to follow
the same protocol, this is called symmetric rendezvous. This corresponds
to our model in which particles are bound by the uniform motion
constraint; symmetry is broken only by interaction with the obstacles. For
an overview of a variety of other algorithmic results on gathering a swarm
of autonomous robots, see the recent survey by Flocchini [249]; note
that these results assume a high degree of autonomy and computational
power for each individual agent, so their applicability for our scenarios
is quite limited.

9.2. Preliminaries

The “robots” in this chapter are simple particles without autonomy. We
assume that their size is insignificant compared to the elementary cells
in the workspace 𝑃. For simplicity, our description focuses on planar
workspaces 𝑃, consisting of orthogonal sets of cells, so-called pixels,
that form an edge-to-edge connected domain in the integer planar grid,
i.e., a polyomino. (As we sketch in appropriate places, an extension to
three-dimensional workspaces is largely straightforward.) An example
of a polyomino is illustrated in Figure 9.3. Pixels in the planar grid not
belonging to 𝑃 are blocked: They form obstacles for particles that stop the
motion from an adjacent pixel.

The particles are commanded in unison: In each step, all particles are
relocated by one unit in one of the directions “Up” (𝑢), “Down” (𝑑), “Left”
(𝑙), or “Right” (𝑟), unless the destination is a blocked pixel; in this case,
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Figure 9.2.: The polyominoes Corridor,
Capillary, and Brain on which we eval-
uate the approaches. 0 20 40 60 80
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a particle remains in its previous pixel. A motion plan is a command
sequence 𝐶 = ⟨𝑐1 , 𝑐2 , 𝑐3 , . . . ⟩, where each command 𝑐𝑖 ∈ {𝑢, 𝑑, 𝑙, 𝑟}. For
a command sequence 𝐶 and a non-negative integer ℓ , we denote the
command sequence consisting of ℓ repetitions of 𝐶 by 𝐶ℓ .

Because the particles are small, many of them can be located in the same
pixel. During the course of a command sequence, two particles 𝜋1 and 𝜋2
may end up in the same pixel 𝑝, if 𝜋1 moves into 𝑝, while 𝜋2 remains in 𝑝
due to a blocked pixel. Once two particles share a pixel, any subsequent
command will relocate them in unison—they will not be separated, so
they can be considered to be merged.

The distance dist(𝑝, 𝑞) between two pixels 𝑝 and 𝑞 is the length of a
shortest path on the integer grid between 𝑝 and 𝑞 that stays within 𝑃.
The diameter of a polyomino 𝑃 describes the maximum distance between
any two of its pixels; we denote it by 𝐷.

A configuration of 𝑃 is a set of pixels containing at least one particle.
The set of all possible configurations of 𝑃 is denoted by P. We call a
command sequence gathering if it transforms a configuration 𝐴 ∈ P into
a configuration 𝐴′ such that |𝐴′ | = 1, i.e., if it merges all particles in the
same pixel. Gathered particles can easily be directed to any target via a
shortest path.

For evaluation, we use three different workspaces: Corridor, Capillary,
and Brain. These are shown in Figure 9.2.

9.3. Algorithmic Approaches

In this section, we investigate several algorithmic approaches for two-
dimensional scenarios. We start by showing that the problem is compu-
tationally hard – for several variants.

9.3.1. Complexity

We show that the following decision problem, which we call Min-
Gathering, is hard: Given a polyomino 𝑃 and a set of particles, is
there a gathering sequence of length ℓ?

Theorem 9.3.1 Min-Gathering is NP-hard, even for the case of polyominoes.

Proof. We reduce from 3-Sat, i.e., the problem of deciding of whether
a given Boolean formula has a truth assignment; for more background
see [250]. For every instance Φ of 3-Sat, we construct a polyomino 𝑃Φ
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as follows: For every variable, we insert a variable gadget as indicated
in Figure 9.3. We join all variable gadgets vertically in row to a variable
block; we call the top row of each variable gadget its variable row. For every
clause, we construct a clause gadget that contains a left (right) arm for
each incident positive (negative) literal in the corresponding variable row
and an exit arm in the bottom. To obtain 𝑃Φ, we join all clause gadgets
from left to right by a bottom row and insert a variable block at the left
and right end of the bottom row. For an illustration, consider Figure 9.3.

x1

x2

x3

x4

variable block

clause gadget

variable gadget

Figure 9.3.: The polyomino 𝑃Φ for the
3-Sat-instance Φ = (𝑥1∨ 𝑥2∨ 𝑥3)∧ (𝑥2∨
𝑥3∨ 𝑥4). A sequence that merges the two
red particles with 1

2 (𝐷 + 𝑏) commands
corresponds to a variable assignment of
Φ.

Let 𝐼 be the instance of Min-Gathering consisting of 𝑃Φ where the top
row is filled with particles. We call the two leftmost particles above the
variable blocks, the red particles and denote the length of the bottom row
by 𝑏. Note that the distance between the red particles is the diameter 𝐷.

Claim 9.3.2 𝐼 has a gathering sequence of length ℓ := 1
2 (𝐷 + 𝑏) if and only

if Φ is satisfiable.

If Φ is satisfiable, consider a satisfying assignment of Φ and apply the
command sequence that moves the left red particle to the left pixel of
the bottom row such that it moves left in the variable row of 𝑥𝑖 if 𝑥𝑖 is
true and right, otherwise. Note that each particle of a clause gadget uses
an arm of a variable satisfying the clause and thus ends in the bottom
row of 𝑃Φ. Then the command sequence ⟨𝑙⟩𝑏 merges all particles. This
gathering sequence has length ℓ .

Now we consider the case that Φ is not satisfiable. We show that in
a gathering sequence of length ℓ , the red particles must merge in the
bottom row: They do not merge in one of the variable blocks, otherwise
the distance of one particle to the merge location exceeds ℓ . Moreover,
the two particles move symmetrically through the variable blocks for (at
least) the first ℓ − 𝑏 commands. Reaching the bottom row of length 𝑏 on
opposite ends, they can only merge within 𝑏 steps at the left or right end
of the bottom row.

Consequently, the gathering sequence is determined by merging the
two red particles; only the choice of going left or right in each variable
gadget is to be determined, yielding a one-to-one correspondence to
each variable assignment. Because Φ is unsatisfiable, in every variable
assignment there exists a clause that is not satisfied. Consider the top
particle of this clause, which we call the blue particle. When traversing
the clause gadget, the blue particle does not use any variable arm while
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the red particle traverses the variable block; because the exit arms of
the variable blocks and clause gadgets are on different heights, the blue
particle ends one pixel before the bottom row after ℓ − 𝑏 steps. Thus, the
red and the blue particles cannot be merged by 𝑏 commands.

Note that the left pixel of the bottom row is one of two possible merge
location for a gathering sequence of length 1

2 (𝐷 + 𝑏). Therefore, the
same reduction shows that problem remains hard if a target location is
prescribed. In fact, an even stronger statement holds true: An instance of
the polyomino 𝑃Φ where all pixels are filled has a gathering sequence
of length 1

2 (𝐷 − 𝑏) if and only if Φ is satisfiable. This implies that the
decision problem of Robot Localization is also hard. In an instance
of this problem, we are given a sensorless robot 𝑟 in a polyomino, and
wonder whether there exists a command sequence of length ℓ such that
we know the position of 𝑟 afterward. The above observations yield:

Corollary 9.3.3 Robot Localization is NP-hard.

9.3.2. Merging Two Particles

We start with a special class of polyominoes. We call a polyomino 𝑃 simple
if decomposing 𝑃 with horizontal lines through pixel edges results in
a set of rectangles R such that the edge-contact graph C(R) of R is a
tree. The edge-contact graph of a set of rectangles in the plane contains
a vertex for each rectangle and an edge for each side contact; a corner
contact does not result in an edge. A hole of a polyomino 𝑃 is a maximal
set of blocked cells (cells not contained in 𝑃) that are connected such that
there exists a closed walk within 𝑃 surrounding it. As usual, simplicity
of a polyomino captures the feature of not containing holes. A shortest
path from a pixel 𝑝 in 𝑃 to a rectangle 𝑅 in R is a shortest path from 𝑝 to a
pixel 𝑞 in 𝑅 such that dist(𝑝, 𝑞) is minimal.

Theorem 9.3.4 For any two particles in a simple polyomino 𝑃, there exists a
gathering sequence of length 𝐷.

Proof. Let R be a decomposition of 𝑃 into rectangles by cutting 𝑃 with
horizontal lines through pixel edges. Then, because 𝑃 is simple, the
edge-contact graph C(R) of the rectangles R is a tree. For an example,
consider Figure 9.4.

Figure 9.4.: A simple polyomino 𝑃, and
its edge-contact graph C(R) (in gray).
When the red particle 𝜋 moves toward
the green particle 𝜋′, 𝜋 and 𝜋′ follow
the respective red and green paths. The
dotted lines separate the pixels.

π

π′
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For every 𝑡, let 𝑅𝑡 and 𝑅′𝑡 be the rectangles of 𝑃 containing the two
particles 𝜋 and 𝜋′ after applying 𝑡 commands, respectively. Moreover, let
𝑆𝑡 be a shortest path from 𝑅𝑡 to 𝑅′𝑡 in C(R); and let 𝑆𝑡(1) be the successor
of 𝑅𝑡 on 𝑆𝑡 (if it exists, i.e., 𝑅𝑡 ≠ 𝑅′𝑡).

We use the following strategy:

Phase 1: While 𝑅𝑡 ≠ 𝑅′𝑡 , compute a shortest path 𝑆𝑡 from 𝑅𝑡 to 𝑅′𝑡 in
C(R). Move 𝜋 to 𝑆𝑡(1) via a shortest path in 𝑃. Update 𝑅𝑡 and 𝑅′𝑡 .

Phase 2: If 𝑅𝑡 = 𝑅′𝑡 , merge 𝜋 and 𝜋′ by moving 𝜋 toward 𝜋′ by a shortest
(horizontal) path; note that this gathering sequence merges the particles
within 𝑅𝑡 .

We now show that this strategy yields a gathering sequence of length 𝐷.
In fact, the resulting sequence has the following property.

Claim 9.3.5 For every 𝑠 > 𝑡, the rectangles 𝑅𝑠 and 𝑅′𝑠 are either equal to 𝑅𝑡
or lie in the connected component 𝐶 of C(R \ 𝑅𝑡) containing 𝑅′𝑡 .

To arrive at a contradiction, assume that 𝜋 enters a rectangle 𝑅𝑠 (≠ 𝑅𝑡)
that is not in 𝐶. Because 𝜋 moves toward 𝜋′ in every step, there also
exists 𝑝 > 𝑡 such that 𝑅′𝑝 (≠ 𝑅𝑡) is not contained in 𝐶.

Because 𝑃 is simple, there exists an 𝑗 with 𝑝 > 𝑗 ≥ 𝑡 such that 𝑅 𝑗 = 𝑅′
𝑗
=

𝑅𝑡 . However, because 𝑅 𝑗 = 𝑅′
𝑗
, 𝜋 and 𝜋′ merge in 𝑅 𝑗 , i.e., 𝑅𝑠 = 𝑅𝑡 and

𝑅𝑝 = 𝑅𝑡 . A contradiction.

The claim implies that 𝜋 never re-enters a rectangle, i.e., it moves to an
unseen rectangle in every step of Phase 1. Because 𝑃 is finite, 𝜋 and 𝜋′

eventually meet in some rectangle which ends Phase 1 and therefore
merge in Phase 2.

Moreover, for every 𝑡, the merge location and 𝑅′𝑡 lie in 𝐶 or are equal to
𝑅𝑡 . Consequently, in every step, 𝜋 moves toward the merge location on a
shortest path. Because a shortest path is at most of length 𝐷, the length
of the gathering sequence is bounded by 𝐷.

This claim implies that the merge location and 𝑅′𝑡 lie in 𝐶 or are equal to
𝑅𝑡 . Consequently, in every step, 𝜋 moves toward the merge location on a
shortest path and thus that the gathering sequence is at most of length
𝐷.

In the remainder, we call the strategy used to prove Theorem 9.3.4
DynamicShortestPath (DSP): Move one particle toward the other along
a shortest path; update the shortest path if a shorter one exists. The
example in Figure 9.5 shows that DSP may perform significantly worse
in non-simple polyominoes.

Proposition 9.3.6 The strategy DSP may not yield a gathering sequence of
length 𝑂(𝐷) in non-simple polyominoes.

Proof. By the symmetry of 𝑃, the distance between the two particles
decreases for the first time when one of them is at the left or right side
of 𝑃. Therefore, denoting the number of holes by 𝐻 where each hole
is of height ℎ and width 𝑤 as indicated in Figure 9.5, the length of the
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gathering sequence 𝐶 is 𝐻(6ℎ + 𝑤) + 3, while the diameter is bounded
by 𝐷 ≤ (𝐻 − 2)𝑤 + 6ℎ + 2𝑤 + 4 = 𝐻𝑤 + 6ℎ + 4. Choosing ℎ := 𝑐𝑤/6 for
some constant 𝑐 ≥ 𝐻, the ratio of |𝐶 | and |𝐷 | can be arbitrarily large:

𝑐𝐻𝑤 + 𝐻𝑤 + 3
𝐻𝑤 + 𝑐𝑤 + 4

≥ 𝐻(𝑐 + 1)
𝐻 + 𝑐 + 1

≥ 𝐻

2

Figure 9.5.: When the red particle 𝜋
moves toward the green particle 𝜋′ by
shortest paths, 𝜋 visits the entire bottom
path.
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w

Nevertheless, DSP always merges two particles;

Proposition 9.3.7 For every polyomino 𝑃 with 𝑛 pixels and diameter 𝐷 and
every configuration with two particles, DSP yields a gathering sequence of
length 𝑂(𝑛𝐷).

Proof. Let 𝜋 follow 𝜋′. We show that within 𝑛 commands, their distance
Δ decreases at least by one. Note that if the shortest path must be updated,
the distance decreases.

Consider a sequence 𝐶 of ℓ steps, in which Δ remains constant. In 𝐶, 𝜋′
has no collision and the shortest path is only updated when 𝜋 the end
of the current shortest path, i.e., a previous position of 𝜋′. Let 𝑝0 and 𝑝1
denote the initial position of 𝜋 and 𝜋′, respectively. When 𝜋 reaches 𝑝𝑖 ,
𝑝𝑖+1 denotes the position of 𝜋′. Let 𝑣 be the coordinate vector from 𝑝0 to
𝑝1. Because 𝜋 has no collision, 𝑣 is the coordinate vector from 𝑝𝑖 to 𝑝𝑖+1
for every 𝑖. Note that 𝜋′ must have a collision when moved 𝑁 times in
direction 𝑣 (because 𝑃 ends). Moreover, 𝜋 reaches 𝑝𝑖+1 from 𝑝𝑖 after at
most 𝐷 commands. Consequently, ℓ ≤ 𝑛𝐷.

Using a different strategy yields a better bound: The strategy MoveToEx-
tremum (MTE) iteratively moves an extreme particle (e.g. bottom-leftmost)
to an opposite extreme pixel (e.g. top-rightmost) along a shortest path.

Theorem 9.3.8 For any two particles in a polyomino 𝑃, MTE yields a
gathering sequence of length at most 𝐷2.

Proof. Let 𝑞 be the top-rightmost pixel of 𝑃. To merge the two particles in
𝑞, our strategy is as follows: Identify the particle 𝜋 that is bottom-leftmost.
Apply a command sequence that moves 𝜋 to 𝑞 on a shortest path. Repeat.

Claim 9.3.9 In each iteration, the sum of the distances Δ of the two particles
to 𝑞 decreases.
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Note that Δ decreases when the other particle 𝜋′ has a collision. If 𝜋′
had no collision, there exist a pixel that is higher or more to the right
than 𝑞, contradicting the choice of 𝑞. Consequently, the sum of distances
Δ, which is at most 2𝐷 at start, decreases at least by 1 for every 𝐷 steps.
Hence, after 𝑂(𝐷2) steps, Δ is reduced to 0.

Note that there exist polyominoes, e.g., a square, where the number of
pixels 𝑛 is in Ω(𝐷2). Therefore, Theorem 9.3.8 significantly improves the
bound of 𝑂(𝑛3) in [22].

Finally, we note that a shortest gathering sequence for two particles in a
non-simple polyomino may need to exceed 𝐷.

Proposition 9.3.10 Let 𝑃 be a polyomino with two particles. A shortest
gathering sequence may be of length 3

2𝐷 − 𝑂(
√
𝐷).

Proof. Let ℎ ∈ ℕ. Consider the polyomino 𝑃 illustrated in Figure 9.6
which consists of the bottom row and 𝑆 chimneys of height ℎ and length
2ℎ + 4. Because 𝑃 consists of (2ℎ + 4)𝑆 + 6𝑆 pixels, it has a diameter of
𝐷 = (ℎ + 5)𝑆. We set 𝑆 = 2ℎ + 4. The two particles 𝜋1 and 𝜋2 have an
initial distance of 𝐷 such that the number of chimneys to the left of 𝜋1
and to the right of 𝜋2 is 1

2 (ℎ − 1). Due to the symmetry of 𝑃 and the

h

1
2 (h− 1) 1

2 (h− 1)h+ 5

Figure 9.6.: A polyomino consisting of a
base and 𝑆 chimneys.

placement of the particles, the distance Δ of 𝜋1 and 𝜋2 cannot decrease
within the first 1

2 (ℎ − 1)(2ℎ + 4) − 1 = 𝐷
2 − 𝑂(

√
𝐷) commands. Without

loss of generality, we assume that 𝜋1 is on the left side of 𝑃 right before
Δ decreases for the first time. We call this configuration west-touch.

Starting from the west-touch configuration, the best merge location is in
the top of the leftmost chimney. Hence, the distance of 𝜋2 to the merge
location is 𝐷 − ℎ = 𝐷 − 𝑂(

√
𝐷).

Consequently, a gathering sequence is at least of length 𝐷
2 +𝐷 −𝑂(

√
𝐷).

9.3.3. Reducing the Number of Particles

Now we show how to significantly decrease the number of particles with
few commands to a parameter proportional to the complexity of the
polyomino, namely the number of convex corners. This is particularly
relevant for establishing the existence of oblivious gathering strategies
that are capable of merging all particles efficiently, even if their initial
configuration is not known. (See Subsection 9.5.1.)
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Lemma 9.3.11 Let 𝑃 be a polyomino with diameter 𝐷 and 𝑘 convex corners.
For every configuration 𝐴 ∈ P, there exists a command sequence of length
2𝐷 which transforms 𝐴 to a configuration 𝐴′ ∈ P such that |𝐴′ | ≤ 𝑘/4.

Proof. We distinguish four types of convex corners; northwest (NW),
northeast (NE), southwest (SW), southeast (SE). By the pigeonhole prin-
ciple, one of the types occurs at most 𝑘/4 times; without loss of generality,
let this be the NW corners.

We show that after applying the sequence ⟨𝑙 , 𝑢⟩𝐷 , every particle lies in
a NW corner: Consider a particle 𝜋 in pixel 𝑝. Unless 𝜋 lies in a NW
corner, it moves for at least one command in {𝑙 , 𝑢}. Because 𝑃 is finite,
there exists an ℓ large enough such that 𝜋 ends in a NW corner 𝑞 when
the command sequence ⟨𝑙 , 𝑢⟩ℓ is applied, i.e., there exists an 𝑝𝑞-path
consisting of at most ℓ commands of types 𝑙 and 𝑢, respectively. Because
a monotone path is a shortest path, it holds that ℓ ≤ 𝐷.

9.3.4. General Upper Bounds

Combining Lemma 9.3.11 and Theorem 9.3.4 yields:

Corollary 9.3.12 For a set of particles in a simple polyomino 𝑃 with diameter
𝐷 and 𝑘 convex corners, there exists a gathering sequence of length 𝑂(𝑘𝐷).

Lemma 9.3.11 and Theorem 9.3.8 imply the following fact:

Corollary 9.3.13 For any set of particles in a polyomino 𝑃 with diameter
𝐷 and 𝑘 convex corners, there exists a gathering sequence of length at most
𝑂(𝑘𝐷2).

We obtain the analogous result for three-dimensional settings by analyz-
ing cuboids instead of rectangles, six directions of motion instead of four,
and the corners in eight quadrant directions instead of four.

9.4. Reinforcement Learning

When looking at the pixilated graphics in Figure 9.11, we are reminded of
classical arcade games. In 2013, Mnih et al. [251] proposed an algorithm
based on deep reinforcement learning that was able to learn how to
play Atari games and eventually reach the level of professional play-
ers [252]. Because such algorithms have now become freely available and
reasonably easy to use, e.g., Stable Baselines [253], we can let them ‘play’
Min-Gathering.

In reinforcement learning, an agent is exposed to an environment in
which it has to achieve an objective by performing a sequence of actions
that manipulate the state of the environment. Upon each action, the
environment can yield a reward (or penalty), or it can terminate. During
repeated trials, the agent has to learn a policy that maximizes the (expected)
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total reward by choosing actions based on observations, i.e., the perceived
states.

Let us denote the state space byS, the actions by A, the transition function
by 𝑇 : S× A→ S, and the reward function by 𝑅 : S× A→ ℝ. For
simplicity, this notation neglects probabilistic elements that are common
in other use cases. Starting at an initial state 𝑠0 ∈ S, the agent selects an
action 𝑎0 ∈ Abased on the probabilities of the policy 𝜋 : S×A→ [0, 1],
resulting in the reward 𝑟0 = 𝑅(𝑠0 , 𝑎0), and leading to the next state
𝑠1 = 𝑇(𝑠0 , 𝑎0). This is repeated until a final state is reached, after which
the total reward ∑

𝑖 𝑟𝑖 is evaluated. We call such a sequence a period.

We use a Convolutional Neural Network (CNN) on an image of the particle
locations as a policy. The construction and training can be performed
by readily available algorithms such that we only need to provide the
environment, but it is useful to understand the basics of the algorithms
before we design the environment. While we could simply display the
particles as a matrix and give a reward for successful gathering, the
algorithms could not learn efficiently from such an environment. In the
following, we give a short introduction into the inner workings of these
algorithms.

During training, we need to optimize the (initially random) network pa-
rameters to (incrementally) yield better actions. A fundamental problem
in reinforcement learning is that we need a sequence of actions to gain a
reward, but the policy needs to be trained for individual actions. Often,
we even need to perform some penalized actions along the way. How
can we compute the advantage of actions not only based on their direct
reward or penalty but based on their long-term influence, such that the
policy can improve its output? This is known as the credit assignment
problem, and a common strategy is to consider all future rewards (reduced
by some discount factor) for each action.

Let us take a look at the simple REINFORCE algorithms [254] as an
example:

1. Run multiple periods with the neural network (that initially only
returns random values) and compute for each returned action the
gradients of the network parameters which increase the probability
of this action.

2. Compute the advantages of the performed actions. For each period
(𝑠0 , 𝑎0 , 𝑟0), (𝑠1 , 𝑎1 , 𝑟1), . . . , (𝑠𝑛 , 𝑎𝑛 , 𝑟𝑛), the advantage of performing
𝑎𝑖 in state 𝑠𝑖 is determined by 𝐴(𝑠𝑖 , 𝑎𝑖) =

∑
𝑗=𝑖 ,...,𝑛 𝛾

𝑗−𝑖 · 𝑅(𝑠 𝑗 , 𝑎 𝑗),
where 𝛾 ∈ (0, 1) is the discount factor. We standardize the ad-
vantages by subtracting the mean over all periods and dividing
by the standard deviation. Positive standardized advantages now
correspond to actions that lead to above average rewards.

3. Multiply the gradients of the first step with the standardized
advantages of the second step, and use their mean to perform a
Gradient Ascent step on the neural network. The more advantageous
an action has been, the stronger it gets reinforced.

4. Repeat this procedure until the policy performs sufficiently well.

In our implementation, we use the more advanced Proximal Policy Op-
timization (PPO) algorithm [255], which actually learns not only the
best action but also the advantage. The differences between PPO and
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REINFORCE are significant in practice, but for designing a reasonably
good reward function as in Subsection 9.4.1, understanding the idea of
the REINFORCE algorithms should suffice. For a deeper understand-
ing, we refer the curious reader to the extensive current literature, such
as [256].

We design the environment for Min-Gathering as follows:

▶ The observations are images of the particle locations scaled to
84 × 84 pixels with a maximum filter for all instances. This is a
common resolution keeping the CNN reasonably small, which not
only speeds up the computations but can also help the CNN to
generalize.

▶ We fill the environment completely with particles. A motion se-
quence that gathers all particles can be applied to any configuration.
However, it is also possible to use a concrete configuration as the
initial state.

▶ Each action is repeated automatically a fixed number of times, also
called frame skipping. This speeds up the learning process drastically,
as a few random (repeated) actions can result in visible gathering
progress. Otherwise, random actions have only a low chance of
making notable progress.

▶ We not only provide the four basic motions as actions but also
add diagonal motions, which are simulated by two basic motions
in random order. This drastically improved the performance in
preliminary experiments, especially with much frame skipping.
Diagonal movements are also a common pattern in the solutions.
Providing them directly speeds up the learning process.

▶ The lowered resolution and the frame skipping makes it difficult to
gather particles to a single location. Thus, we consider the particles
as gathered if they are within a radius of 10 steps of an extreme
point. The final gathering is then performed by the heuristic Min-
SumToExtremum, which only needs around 15 additional motions
in our experiments as the particles are already close to an extreme
point.

▶ If the particles are not gathered after 500 motions for Corridor,
800 motions for Capillary, or 3500 motions for Brain, the period
gets terminated. This prevents the algorithm from spending too
much time if the agent ‘gets lost’. These limits have been chosen
based on the performance of the classical algorithms.

▶ The design of the reward function is the most important part, and
is discussed in Subsection 9.4.1.

▶ The extraction of the best solution directly from the learning process
is discussed in Subsection 9.4.2.

9.4.1. Reward

Giving a reward only after all particles are gathered is not practical
because every period that does not gather all particles looks equally bad.
Using this method, a command sequence that is capable of getting the
particles at least close by looks as bad as a command sequence that does
nothing at all. This implies that as long as the particles are not gathered
by chance, which is very unlikely, all actions are classified as bad. If
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all action are equally bad, the policy cannot do anything but perform
random motions.

A straightforward alternative is to give a reward every time the diameter
of the particle swarm is reduced. Of course, we only give a reward if the
all-time minimal diameter is reduced; otherwise, repeatedly growing
and shrinking the particle swarm may be learned as a ‘good’ strategy. To
encourage a short gathering sequence, we can additionally give a small
penalty for every action.

An issue with this reward function is that it is time-consuming to
compute after every step. We know that extreme points in the maze are
good gathering locations. Instead of computing the diameter, we could
compute the maximal distance of a particle to an extreme point. Let 𝐸
be the set of extreme points, then the maximal distance is defined as
min𝑒∈𝐸 max𝑝∈𝑃 dist (𝑝, 𝑒). This gives us the option to choose any extreme
point, but it must be the same for all particles. The distance of each
location to an extreme point is fixed and can be computed ahead of time,
thereby making this computation just a lookup for every particle.

For instances like Brain, we actually first need to escape some recesses
before we can minimize the distance. This has the same issue as before
of being hard to achieve through random moves. Here we can support
the detection of progress not only by providing reward for minimizing
the maximal distance but also by providing reward for minimizing the
mean distance.

Because the distances can vary strongly for different instances, we nor-
malize the rewards such that each of the two reward components can
only give an accumulated maximal reward of 1, and the motion penalty
an accumulated penalty of at most −1. We normalize the reward of
minimizing the maximal or mean distance by 1 by dividing through the
initial distance. The rewards are normalized via dividing by the initial
maximal resp. mean distance. The motion penalty is normalized by the
motion limit 𝐿 such that each motion gives a penalty of −1/𝐿.
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Figure 9.7.: Rewards and distances dur-
ing the best movement sequence of the
Brain instance, computed with reinforce-
ment learning. We can see that the max-
imal distance, which we want to mini-
mize, stagnates during the first 500 steps.
Maximal and mean distances must both
overcome local minima.

An example for the Brain instance is given in Figure 9.7. We see that the
mean distance supports the maximal distance well as it is more contin-
uous than the maximal distance. The maximal distance only markedly
decreases after 500 steps, which is too long without proper feedback.
The maximal and mean distances must overcome local minima until
the particles are gathered, showing that a naïve local search would not
be successful. Even if a local search were to succeed, it is unlikely that



216 9. Targeted Drug Delivery

the gradients would always point in a direction that leads to a short
gathering sequence. The strength of the reinforcement learning approach,
however, is that it automatically improves the reward function.

9.4.2. Implementation

In this section, we show how to easily implement the optimizer. Modern
reinforcement learning libraries require barely any knowledge of rein-
forcement learning or neural networks. Of course, some knowledge and
experience is useful, especially for designing a good reward function.
This is comparable with modern MIP-solvers that can be used without
much understanding of the underlying techniques, but creating a good
formulation that can be quickly solved is more difficult. A simple imple-
mentation that finds the shortest action sequence to achieve the objective
can look as follows:

1 # Create a learning environment

2 class LearningEnv(gym.Env):

3 def __init__(self, simulation, limit, repeat):

4 self.simulation = simulation

5 self.rewards = Rewards(simulation, limit)

6 self.repeat = repeat

7 self.min_solution = None

8 # Define input and output for the neural network

9 self.action_space = gym.spaces.Discrete(simulation.no_actions)

10 self.observation_space = gym.space.Box(low=0, high=255,

11 shape = simulation.image_shape, dtype=np.uint8)

12

13 def step(self, action):

14 # Perform a step in the simulation and give feedback.

15 for i in range(self.repeat):

16 self.simulation.step(action)

17 observation = self.simulation.as_image()

18 reward, abort = self.rewards.eval_state()

19 if self.simulation.is_gathered():

20 abort = True

21 new_sol = self.simulation.history

22 if self.min_solution is None or

23 len(self.min_solution) > len(new_sol):

24 self.min_solution = new_sol

25

26 return observation, reward, abort, {}

27

28 def reset(self):

29 # Reset simulation and rewards for the next try.

30 self.simulation.reset()

31 self.rewards.reset()

32

33 # Load instance

34 simulation = Simulation(’my_instance.json’)

35 # Allow up to 1000 steps and automatically repeat four times

36 env = LearningEnv(simulation, limit=1000, repeat=4)

37 # Automatically resize observations to 84x84

38 resized_env = ResizeObservation(env, shape=(84, 84))

39 # Automatically build neural network (CNN)

40 model = PPO(’CnnPolicy’, resized_env)
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41 # Try for 300 000 steps

42 model.learn(total_timesteps=300_000)

43

44 # Output best solution

45 print("Solution:", env.min_solution)

This code uses Stable Baselines 3 [253], but interfaces in state-of-the-art
machine learning libraries are highly volatile. In this case, we are using
the Proximal Policy Optimization (PPO) algorithm, but it can be replaced
by multiple other algorithms.

This implementation only misses two problem-specific details: the sim-
ulation and the reward function. The simulation needs to be able to
perform a sequence of individual actions encoded by discrete numbers
(e.g., 0 for up, 1 for right, . . . ), return the current states as an image
or a matrix, detect if the objective has been achieved, remember the
corresponding solution, and reset to the initial state. The reward function
only needs to compare the current and the last state and rate the change
or abort the current solution process, e.g., by a length limit, if it is not
promising.

Note that this approach actually uses the training phase of the neural
network to find a solution. Usually, one trains the neural network to use
it afterward. As our environment does not change and the sequences
remain valid, simply using the best encountered solution is the better
strategy.

Future Work 9.1.

We currently always reset the simulation to its initial state. Thus,
the reinforcement learning algorithm will only look at independent
complete solutions. If we have some promising intermediate states, it
may be more efficient to continue with an intermediate state. This can
easily be implemented by loading this state during reset instead of
resetting the simulation. The primary challenge is to detect promising
states. Can we bring the reinforcement learning approach closer to
classical search algorithms like 𝐴∗, but with a self-learning distance
function using such a technique?

9.5. Evaluation

In this section, we evaluate the performance of the following approaches
on practical instances in a simulation.

▶ The approach StaticShortestPath (SSP) iteratively merges pairs
of particles by moving one to the position of the other, along a
shortest path, see Alg. 2 in [22].

▶ The approach DynamicShortestPath (DSP), as described in Sec-
tion 9.3.

▶ The approach MoveToExtremum (MTE), as described in Section 9.3.
Among the four possible commands, we choose an extremum that
minimizes the initial sum of distances to both particles.
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Figure 9.8.: Comparison of the combinatorial algorithms with different pair selections (random (RP) or most distanced (MP)) and
optional corner preprocessing (cRP resp. cMP).

▶ The heuristic MinSumToExtremum (MSTE) generalizes the idea
of MTE. It selects an extremum with the smallest initial sum of
distances to all particles and iteratively performs a command that
decreases this sum the most. If no command decreases the sum,
two particles are selected and merged by MTE. Afterward, MSTE
resumes.

▶ Additionally, we evaluate the machine learning approach Rein-
forcementLearning (RL), as described in Section 9.4. We use the
default parameters for all mazes and only vary the motion repe-
titions, limits, and time steps. The Corridor and the Capillary

maze are trained over 300 000 time steps with a frame skipping of
4. The Brain maze is trained over 600 000 time steps with a frame
skipping of 16.

The experiments were performed on over 130 random particle configura-
tions with 1000 particles in each environment. Every configuration was
solved by all strategies to ensure comparability. The preprocessing used
a random direction to move the particles into corners. We used a work-
station equipped with an AMD Ryzen 7 1700 CPU with 8 × 3.0 GHz and
32 GB memory, and an Nvidia GTX 1050 Ti GPU with 4 GB memory.

We first compare the combinatorial strategies SSP, DSP, MTE, MSTE and
their options. For these strategies, we evaluate the options of

1. choosing a pair uniformly at random or
2. choosing the pair with maximal distance.

Additionally, we analyze the advantage of using the preprocessing strat-
egy that moves all particles to corners, as described in Subsection 9.3.3.

The results in Figure 9.8 show that MSTE performs best on average,
and that the pair selection and preprocessing options only have a small
influence on it. Only for the small Corridor instance, the SSP strategy
with most distanced pairs and preprocessing performs visibly better. For
the shortest path strategies SSP and DSP, the most distanced pairs show
a significant advantage for the first two environments, while it has only a
small influence on MTE and MSTE.

We also experimented with optimal pair merging sequences computed by
an 𝐴∗-algorithm, but in preliminary experiments we encountered worse
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results at a higher computational complexity such that we ignored this
approach for the final experiments. An explanation for the worse results
could be that, e.g., MTE and MSTE are guiding many more particles
than just the pair to the extreme position and, thus, are more efficient for
gathering all particles even if the strategy may be suboptimal for just the
pair.
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Figure 9.9.: The reinforcement learning
approach compared to the best results of
the combinatorial algorithms. The rein-
forcement learning approach shows to
be superior especially for the complex
environments. It already yields superior
solutions after a few minutes.

When comparing the best solution of the previous algorithms with the
solution returned by the reinforcement learning approach in Figure 9.9a,
the reinforcement learning approach shows clear superiority despite
assuming a fully filled environment. Especially for theBrain environment,
the reinforcement learning approach yields command sequences of less
than half the length of the other algorithms. The reinforcement learning
approach needs over two hours to train, compared with just a few
minutes for the execution of MSTE, but already after a few minutes it
yields superior solution that improves further over time as can be seen in
Figure 9.9b. Additionally, the runtime can be improved further by using
parallel agents, as PPO supports parallel optimization.

Overall, the reinforcement learning approach is superior and can deal
much better with the complex particle configurations than our combi-
natorial algorithms. Contrary to the combinatorial algorithms, it can
also easily utilize parallelization. In his master’s thesis, Konitzny [257]
performs a deeper and more extensive analysis of this technique and
achieves even better results by lower level optimizations, e.g., replac-
ing the activation neurons. Contrary to our work, he actually uses the
trained agent to perform the gathering; this also allows non-deterministic
environments with continuous physics, showing the flexibility of this
approach.

Future Work 9.2.

Can we achieve a similar performance to deep reinforcement learning
using a more extensive local search? We tried approaches that looked
multiple steps into the future, but they barely improved the overall
performance. The primary problem seems to be rating the individual
states. Maximal and average distances do not seem to work well
enough (based on some preliminary experiments). The advantage
of the deep reinforcement learning approach is that it learns a more
advanced rating automatically.
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Figure 9.10.: Number of particle groups
over time using RL for 100 random con-
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9.5.1. Oblivious Merging

In practice, it may be costly to determine the position of the individual
particles; therefore, oblivious approaches that do not need this information
can be of interest. Such a setting is equivalent to the situation where
initially, each pixel contains a particle; a gathering sequence for all
particles is certainly a gathering sequence for any other (partial) initial
distribution of particles. Recall Corollary 9.3.3, implying that this problem
remains NP-hard. In order to estimate the cost of this restriction in practice,
we study how the number of populated grid cells behaves over time,
depending on the initial number of particles; see Figures 9.10 to 9.12.

Because the number of populated grid cells decreases very sharply in
the beginning and almost all steps are used to merge the few remain-
ing groups of particles, we can conclude that missing knowledge of
the position of the individual particles has negligible cost for uniform
distributions.

9.6. Conclusions

We have described a spectrum of methodological progress on an im-
portant problem of great practical relevance. This exposition focuses on
two-dimensional scenarios, but a generalization to three-dimensional
settings appears to be straightforward. In addition, we point out three
other relevant directions for future research.

Firstly, our algorithmic simulations indicate the strength of our meth-
ods. However, the different outcomes for deterministic as well as ML
approaches indicate that further, more detailed algorithmic studies are
warranted to understand the most successful line of attack; this includes
studies of the necessary tradeoff between computation time and num-
ber of actuation steps, but also includes modified models in which an
actuation step may be able to move particles by more than an elementary
distance. Secondly, how can we deal with random errors in actuation
and navigation? Our insights into oblivious methods clearly indicate
that these should remain tractable, but more detailed considerations
for frequency and amount of errors should provide quantifications and
error-correcting approaches. Finally, it is typically not necessary for our
application scenarios to gather all particles in a target area; moving an ap-
propriate fraction should usually suffice. Figure 9.10 visualizes a slightly
different aspect, but still highlights the prospect that a considerably
reduced number of actuation steps may be achieved.
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Figure 9.11.: The process of gathering 1000 particles in Vessel with RL. The visualization uses a maximum filter to improve visibility.
Gathered particles aggregate to a single particle. We see that the particles quickly collapse to a few clusters.
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Figure 9.12.: The process of gathering 1000 particles in Brain with RL. The visualization uses a maximum filter to improve visibility. We
see how the algorithm quickly moves the particles out of the branches, but sometimes a particle drops back in.
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In this last part of the thesis, we take a completely different approach to
algorithm engineering: instead of solving the problems ourselves, we let
others solve them in a competition setting. Competitions have become
a popular element in computer science. Examples are Google’s yearly
coding competition, hash code, which reported over 125 000 registered par-
ticipants in 2021; or Kaggle (www.kaggle.com) which has run hundreds of
competitions in machine learning, with a huge community of more than
a million registered users. Specialized communities offer their own com-
petitions such as the DIMACS Implementation Challenges (http://dimacs.
rutgers.edu/programs/challenge/), the Graph Drawing Contest of the
International Symposium on Graph Drawing and Network Visualization, or
the SAT-competitions (http://www.satcompetition.org/). Apart from
competitions, there are also static benchmarks for some problems such as
the TSPLIB [198] for the Traveling Salesman Problem, or the MIPLIB [258]
for mixed integer programming.

The Computational Geometry community has been lacking such com-
petitions, despite having an avid practical community. The CG:SHOP
Challenges have been created to fill this gap and have since become
part of the CG Week that also hosts the Symposium of Computational
Geometry (SoCG), considered the flagship conference in Computational
Geometry.

In Chapter 10 (On Hosting the CG:SHOP Challenges) on page 227,
we provide detail on the development and hosting of the CG:SHOP
Challenges. Afterward, we look into the individual competitions. The
first challenge is considered in Chapter 11 (CG:SHOP Challenge 2019)
on page 243, the second in Chapter 12 (CG:SHOP Challenge 2020) on
page 255, and the third in Chapter 13 (CG:SHOP Challenge 2021) on
page 261.

www.kaggle.com
http://dimacs.rutgers.edu/programs/challenge/
http://dimacs.rutgers.edu/programs/challenge/
http://www.satcompetition.org/
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This chapter gives insight into the development and hosting of the
CG:SHOP Challenges. We look at the architecture of the supporting
infrastructure, the involved tasks and workloads, how to select a
good set of instances, and the lessons learned during the first three
installments of the competition.

10.1. Introduction

Hosting a competition is a significant amount of work, but under the right
conditions it can be a worthwhile enrichment for the community. First,
it encourages algorithm engineering research for a problem and may
lead to scientific advances. A competition provides not only motivation
and a predictable time frame but also recognition. Second, competing in
a group is a great team-building exercise that indirectly fosters further
scientific progress. Third, it can introduce students into the community.

The last CG:SHOP Challenges have attracted many student groups, and
students have become a focus of ours. A time span of several months
allows the integration of the competition into the semester and en-
ables teachers to offer the participation as a lab class. Additionally, we
introduced a junior category so that students are not intimidated by com-
peting against more senior teams. The problems are also designed to be
beginner-friendly and not require advanced knowledge in Computational
Geometry to get started.

The CG:SHOP Challenges were initiated as a workshop at CG Week 2019.
The first competition, CG:SHOP 2019, opened February 28th, 2019 and
closed May 31st, 2019. It considered the problem of optimizing the area
of a polygon on a fixed set of points. Details of the competition as well
as its outcome are discussed in Chapter 11 (CG:SHOP Challenge 2019)
on page 243. The competition has been well-received and afterward, the
competition became an official part of CG Week. The three top teams of
each competition are invited to submit and present an abstract about
their approach that is included in the proceedings. For the second
competition, CG:SHOP 2020, the time span was extended to run from
September 30th, 2019 to February 14th, 2020. It considered the problem of
partitioning a point set into convex areas, which is discussed in detail in
Chapter 12 (CG:SHOP Challenge 2020) on page 255. The third challenge,
CG:SHOP 2021, considered parallel motion planning, and is discussed in
Chapter 13 (CG:SHOP Challenge 2021) on page 261. The fourth challenge,
CG:SHOP 2022, is currently running at the time of writing and considers
intersection-free partitioning of graphs.

In the following, we first describe the server architecture and development,
including the used frameworks and components. This can be valuable
information if you plan to develop your own competition page from
the ground up. The techniques are state-of-the-art in 2021 at the time of
writing, but in a few years there may be other more advanced frameworks.
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Afterward, we discuss the workload involved with hosting a competition.
If you are planning to host a competition yourself, you can use this to
estimate the required time and energy. Then we look into how one can
select a good set of instances using techniques from data science. Finally,
we close this chapter with lessons learned.

10.2. Server Architecture

The competitions are managed over a dedicated webpage and server
architecture. The start page gives an overview over announced, running,
and past competitions as well as recent news, see Figure 10.1. When
clicking on a competition, competition-specific information and actions
are shown as in Figure 10.2. The next two sections discuss which frame-
works and libraries have been utilized, and which components had to be
developed.

10.2.1. Frameworks and Libraries

The webpage is powered by a set of different frameworks and libraries
on different servers. The usage of such software not only simplifies the
development but also prevents security and reliability issues. The general
architecture can be seen in Figure 10.3. There are three types of servers:
the web server that hosts the webpage, the watcher that looks for failures
of the web server, and the verification workers that verify submissions
and perform other heavy tasks. In the following, we describe the most
important software used, and why we decided to use them.

Python: We selected Python as primary language, as Python provides
all necessary tools and is very common among students, easing the
training of student assistants. Another advantage of Python is the
reasonably easy integration of native C/C++-code.

Django: There are multiple web-frameworks for Python. We chose
Django because it provides many important functionalities like
database management and migration, user management, security
features, and a powerful template language. It is reasonably easy
to use and provides a lot of tutorials as well as an avid community.
The important basics can usually be mastered within a few days by
a student assistant with basic Python experience.

Ubuntu Linux LTS: We use an Ubuntu Linux with long term support
as server operating system. The only important decision here is to
have long term support because we want a stable software and few
changes. There is no need for up-to-date software as long as it has
no security issues.

Docker: To make the interaction with the database, message broker,
etc., more stable and locally testable, we use Docker containers.
The most important aspect of this is the ability to exactly replicate
the server for debugging and testing. This also encapsulates the
compatibility of critical components, especially the database, from
the operating system updates. Database incompatibilities, either
due to a different testing environment or due to an update, can be
painful to diagnose and fix.
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Figure 10.1.: The start page of the web-
page gives an overview of the latest news
and the competitions.

PostgreSQL: We use PostgreSQL as a relational database. Nearly all
database interaction is managed by Django after the basic setup.
PostgreSQL is installed as a Docker container. Any well-supported
database, like MariaDB, would also be acceptable.

Nginx: Django comes with its own web server, but it is only intended
for development. For the use on the production level, a proper web
server like Nginx is needed. Nginx provides not only significant
speedups but also HTTPS. Apache is an alternative option, but the
documentation of using Nginx with Django is more detailed.

CGAL: The verification of the submissions must be exact. Unfortunately,
many geometric problems tend to have numeric issues. The exact
arithmetic of CGAL prevents such problems while still performing
reasonably fast. The disadvantage is that the verification tool has
to be written in C++, but Python-alternatives are too slow. Even
without CGAL, the usage of a fast programming language like
C++,C, or Rust is recommended if the instances are large.

Celery: Celery is a simple and reliable Python framework for distribut-
ing tasks among multiple computers. We use it to distribute the
verifications of the submissions to the verification workers. Celery
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Figure 10.2.: The competition page pro-
vides a clean interface to access all impor-
tant information and submit solutions.

is very dynamic and allows the easy addition and removal of
workers. Workers use the same code as the web server but are
initiated differently. Making a task executable by a worker is as
simple as adding a decorator to the corresponding function. Celery
does not distribute files, so the submissions to be verified must
be transferred via a separate secure channel. The database can be
accessed directly even using Django’s middleware.

RabbitMQ: RabbitMQ is a message broker, installed as a Docker con-
tainer, for managing the communication of Celery with the workers.
It was chosen because it is claimed to be more robust than Redis.
Redis is claimed to scale better, but we will not receive that many
submissions that this would become an important factor.

Nagios: Nagios watches the web server and informs us automatically
via email about downtimes or other problems, e.g., expiring SSL-
certificates. It runs on a separate server so that it is not influenced
by a complete outage of the primary server. Nagios frees the
administrators of frequent manual checks and keeps downtimes
low. In addition to Nagios, Django is also configured to mail a stack
trace whenever an exception is thrown.

Bootstrap: Bootstrap is a great CSS framework that allows the easy
construction of attractive web interfaces. While it does not give
the webpage a unique design, it makes it look clean and modern
without much effort.
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Figure 10.3.: The server architecture con-
sists of a web server, a watcher, and a
dynamic set of verification workers. The
logos are intellectual property of the cor-
responding projects.

10.2.2. Components

Using the described frameworks and libraries, a set of components had
to be designed and implemented. The following list provides a short
description of these.

User Management: Users are more than just an email address and a
password. Our users for example usually have an affiliation. Because
this event only happens once a year, passwords easily get forgotten,
making options for password resets necessary. Extending the basic
user system of Django by such additional features is reasonably
simple by following corresponding tutorials, as similar features are
also required by many other projects.

Group Management: Users participate as a group in a competition.
While individual participation in a one-man-group is possible,
most participants work in groups, and we want to encourage this
by designing the user interface correspondingly. The users need an
option to create groups and add members. To keep things simple,
we allow every group member to perform any changes and actions
for a group, including removing other members. This may allow
malicious acts by a single group member, but these can be undone by
an administrator. Because of high fluctuation in the academic world,
groups are associated with a single competition and frozen some
time after the deadline. This allows us to freeze the association and
student-status of each group at the time of participation. We also
included options to let a team remain anonymous until they want
to become visible. We had to implement the group management
by ourselves.
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Figure 10.4.: Under ‘Uploads’, the users
can check the status of all their uploads
as well as those from team members.
In case of problems, the status message
provides an explanation.

Figure 10.5.: A red badge subtly informs
about new notifications without annoy-
ing the user.

Competition Management: Competitions need a management system
to organize timing and information. Competitions can take on
different forms, e.g., offering different tracks, which needs to be
reflected by the designed system. The challenge is to make the
components generic enough such that we do not need to rede-
velop too much for every new competition, while still allowing for
specializations. This has been primarily accomplished by making
the components easily copyable. A new competition is created
by cloning a previous one and simply exchanging the key, the
content and information, and the verifier. Every generic logic uses
the competition key so that the data does not get mixed up. The
template and app system of Django provides an excellent structure,
so that finding and replacing the necessary parts is reasonably
simple. For example, the competition description is a single file
that only contains the description and gets embedded into the
competition page, which, in turn, gets embedded into the main
page.

Submission System: The submission system is generic and can easily
be reused by any competition, by simply replacing a key in a
code fragment and adding a verifier for the competition. Every
submission has to be a single zip-file which should be generic
enough for nearly every competition. The content of this zip has
to be verified by the competition-specific verifier which is part of
the verification system. Whenever a zip has been uploaded, the
verification system is informed. A user can get an overview of their
status in their account as shown in Figure 10.4.

Notification System: Communication is important. This provides trans-
parency and helps the user to get confidence in working with
our system quickly. The messages give them direct feedback as to
whether or not they did everything correctly. At the same time,
we do not want to spam the user. CG:SHOP informs users with
a subtle red badge about new notifications, see Figure 10.5. Once
clicked, the badge is removed and the message list pops up, as in
Figure 10.6, allowing further clicks to read the full notifications.

News System: The important announcements are made via community
mailing lists to reach a large audience. For smaller announcements,
we use a blog-like news system. An important motivation for this
was to create a possibility to notify discretely about corrections and
server maintenance.
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Figure 10.6.: Detailed notifications on the
webpage. Mails would have been simpler
to implement but require more time and
care due to the frequency.

Admin System: Django comes with a powerful administration interface
that allows easy alterations to the database. Additionally, Django
can also give us direct access to the data, so that the progress
of the participants can be easily analyzed. We are currently de-
veloping the option to automatically create daily reports based
on Jupyter-Notebooks. An administrator can create one or more
Jupyter-Notebooks computing plots and statistics that get automat-
ically reevaluated every day with fresh data. When the plots show
abnormalities, the administrator can still download the data and
the Jupyter-Notebook and perform further analysis locally. Due to
security reasons, we do not allow editing of the Jupyter-Notebooks
dynamically on the server. Giving an administrator these automatic
insights reduces a lot of stress induced by the unpredictability of
such a competition.

Solution Management: Solutions and the corresponding scores need to
be saved in a generic and simple way. Some users upload many
solutions very frequently, and we have to keep track on the best
solutions. It is also interesting to know how the solutions improve
over time. Due to the mass of solutions, they must be actively
managed; but we cannot simply go through all solutions every time
we want to compute the scores. Additionally, some submissions
may be rejected due to a mistake on our side, and reevaluating all
solutions can take multiple hours or even days. Thus, we need to be
able to simply add and remove submissions and their solutions from
the system. The primary challenge of the solution management is
to make the database fast enough, while memorizing the temporal
differences.

Verification System: Every competition needs its own verification tools.
The verification consumes a lot of resources and should not be
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performed on the web server itself. Geometric problems often tend
to have arithmetic problems requiring exact arithmetics, as pro-
vided by CGAL. This exact arithmetic comes with the disadvantage
of unpredictable memory usage that can lead to out-of-memory
errors. The outage of a single verification worker should, hence,
not harm the overall system. While we can often detect and fix
numerical problems in practice using heuristics, we cannot rely on
heuristics for evaluation. The primary risk would be missing some
edge cases and rejecting superior solutions, destroying the faith in
a fair and competent evaluation. The bulk of the uploads happens
right before the deadline, and participants anticipate the results.
Therefore, it is useful to be able to scale the resources up: the usage
of celery allows us to dynamically add and remove verification
workers even on hard reboots.

10.3. Workload and Tasks

In this section, we take a look at the tasks and workloads that were
necessary for hosting the CG:SHOP competition for three years (and
counting).

10.3.1. Problem Selection

Before we can start a competition, we need a suitable optimization
problem as challenge. This must be sufficiently difficult to solve but
should also not require too much expertise. Optimally, the problem has a
convincing motivation but has not yet gathered too much attention. For
example, the Traveling Salesman Problem would be a terrible problem,
because it is unlikely that anyone would be able to beat Concorde [134].
Luckily, a call for problems and an experienced advisory board can
perform this task with reasonably low effort (the biggest problem being
the synchronization with all members). It is recommended to interleave
the problem selection with a preliminary instance selection, which can
take more time and is discussed later.

Score

Every problem definition also needs a score by which the participants are
compared. Using only the objective function, we can compare solutions
for individual instances but not a whole instance set. For the first two
competitions, we used a lower resp. upper bound to scale the objective
values between 0 and 1. A score can then be computed by simply summing
up these values. However, if the bound is not close to the optimal value,
the score can get skewed, as can be seen for the Min-Area objective
in CG:SHOP 2019. Another problem arises if the objective values are
relatively tight, leading to very close scores as in CG:SHOP 2020. For
CG:SHOP 2021 we used a relative score that uses the best solution as
bound, because we had no good bound available. The problem with such
a score is that the score for a team can decrease when other teams submit
better solutions. While we showed the score progress to the participants



10.3. Workload and Tasks 235

in the first two years, we only showed the progress on the objectives of
individual instances in the third year. Much time has been dedicated to
designing fitting scores, without a completely satisfying result. Aspects
as how should a team with few significantly better solutions be rated
compared to a team with many slightly better solutions are difficult to
balance in advance.

10.3.2. Development

The development requirements can be split into (1) the generic webpage
and (2) the problem-specific verifier. Implementing the webpage is largely
a one-off investment while implementing the verifiers is a recurrent
task.

Webpage

Providing just a simple web interface to upload files can be done quickly
by just following tutorials. Even adding some simple user management
and showing plots and tables regarding one’s own submissions is straight-
forward in Django. The verification can be done by a separate process
that scans for new submissions, verifies them, and writes the results into
the database. This allowed us to implement the webpage of CG:SHOP
2019 within two man-weeks despite having nearly no prior experience in
web development.

However, this simple webpage only provided the most essential features
and, e.g., did not allow us to add further competitions at a later point in
time. For the second competition, we decided to redevelop the webpage
from scratch to improve the user experience, and to make the webpage
reusable for future years. The verification process was especially prob-
lematic and was replaced by the dynamic and distributed system we have
now. Thanks to the experience from the first year as well as having more
preparation time, we were able to come up with a concrete concept that
allowed us to describe and distribute smaller work packages to student
assistants. The more complex architecture and many custom elements
made the development process significantly more time-consuming. Over-
all, it approximately cost us three man-months of a researcher, plus a
total of six man-months of student assistants.

Verifier

The verifier has to be redeveloped anew for every competition, but as
verifying solutions is an essential task of algorithm engineering, it is a
task we were familiar with. Implementing a single verifier probably took
no longer than one or two days at most. Making them publicly available
as Python-modules on PyPI was more time-consuming. This required
not only more extensive documentation but also packing the native parts
for various platforms. A further issue was that special care had to be put
into providing good error messages. There had been multiple special
cases, especially in clearly not optimal solutions, that had not occurred to
us. While these cases were usually still caught, the error messages were
simply unsuitable. Addressing these issues cost us approximately one to
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two weeks per verifier. Keeping the verifier private could save time in
the future.

10.3.3. Instance Selection

The selection of the instances for the benchmark had been very simple for
the first two competitions, as the instances were point sets and we could
simply mix some preexisting sets. In the second competition, we noticed
halfway through that collinear points can have a significant influence
on the objectives. The scores of the teams at this point were very close
by, and the instances barely contained collinear points. To make the
competition more interesting, we generated an additional instance set
with highly collinear instances. While it added some action, adapting
the competition was not well-received by all teams and probably did not
change the outcome, as we will see later.

For the third competition on parallel motion planning, new generators
had to be devised from scratch. The problem was not only to generate
random instances, but instances that included interesting maneuvers and
bottlenecks. The vastness of parameters made selecting a small diverse set
of instances extremely challenging. We discuss tools to deal with instance
selection in Section 10.4 and the generator is described in Subsection 13.2.3.
While the instance selection took less than a day each for the first two
years, it took around two weeks for the third competition. The time
investment for the currently running fourth competition has even been
higher, because many random instances proved to be surprisingly easy
to solve, so the generation of interesting instances required more care.

10.3.4. Support

During the competition, we need to provide support to the participants.
A special email address has been set up for this purpose. We received
around 10 to 30 inquiries and requests per competition. During the
first two competitions, this involved many smaller issues regarding
problems with the webpage, which we optimized afterward. Many mails
also requested details either regarding rules or the webpage. The most
complicated requests required support analyzing why the submission has
been rejected. This was also the reason why we made the verifier public
after the first competition. Often the reason for rejection of a submission
was either due to geometric edge cases or misunderstood rules. Sometimes
security mechanisms, e.g., against malicious archives, rejected files and
needed an adjustment or manual override. Especially due to the last
type of case, support required around 5 days per competition, but this
decreased with more experience.

10.3.5. Maintenance

Server maintenance is probably the most time-consuming and stressful
element of hosting CG:SHOP. There are many components that have
to work correctly with each other and need careful configuration. After
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having had some very bad experiences with inconsistent updates and race-
conditions after reboots, we migrated the system to Docker containers.
Many of these problems most likely arose from problematic or outdated
configurations. Unfortunately, setting up all parameters correctly can
require considerable knowledge or research. The unified, preconfigured,
and isolated environment by Docker allows us to set up such a system with
considerably less knowledge, and it eases looking up issues. Unexpected
problems can still arise, for example we had to spend quite a bit of time
fixing a problem with Docker and the used NFS. Setting up servers, and
keeping them up to date can be a serious and easily overlooked amount
of work, estimated at three weeks per year.

10.3.6. Analysis

If we want to provide more detailed information than just who achieved
the highest score, we need to do some data analysis. This requires insight
into the instances and problem, especially the ability to partition them
into different classes to find strengths and weaknesses of the submitted
solutions. Such analysis should not only be performed at the end, but also
during the competition to detect problems early. An example of this is in
the CG:SHOP 2020, where we noticed that the initial instances where
too simple and the leading team’s submissions nearly identical. While
the first competition was easy to analyze, the last two took multiple days
for the intermediate and final analyses.

10.4. Instance Selection

One problem we are faced with for every competition is the selection of
instances. On one hand, we need a reasonably small set, because many
participants are students who only have a single workstation. Solving
thousands of instances is beyond their resources. On the other hand, we
need a diverse set because some instances are prone to being easy to solve,
but we do not know which ones in advance. For NP-hard problems, there
is often some instance size limit for which we can still solve the instances to
optimality and shortly afterward, instances become exponentially harder.
We can try to find the order of magnitude by quickly implementing a MIP,
CP, or SAT-formulation, but there is always the chance that we overlooked
something. For some NP-hard problems, one can solve even very large
instances by local heuristics because random instances simply do not
contain any of the hard elements which are sometimes very structured,
e.g., by collinearity. An example is the Minimum-Weight Triangulation
which has been proved to be NP-hard by Mulzer and Rote [259], but
instances with 30 000 000 points have been solved to provable optimality
within 4 min by Haas [260]. The instances become more difficult if they
contain point sets that form a regular n-gon with a single point in the
center, but such cases are rarely created by random instance generators if
they are not specially designed for this purpose.

In the following, we describe a technique that tries to distill the ideas
used in CG:SHOP. These steps are only a rough guideline and still
require trial-and-error and manual fine-tuning. Especially selecting the
features for comparing instances usually cannot be done without the
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corresponding knowledge and educated guesses. On the other hand, if
we are able to directly engineer some very strong features, we may not
even need the following steps anymore, but we can select the instances
directly.

1. We try to estimate the correct order of magnitude for instance sizes
and other necessary properties. We can usually quickly devise an
IP, CP, or SAT-formulation that can be used to find the lower bound,
i.e., which instances are too easy. The upper bound is much harder
to estimate. Here we can aim for a logarithmic distribution that
contains only a few very large instances, as we do not want to
discourage participants with too many too hard instances. At the
same time, we want some very hard instances as tie-breaker in case
we overestimated the difficulty of the problem.

2. We create instances using various random generators or, if available,
existing (real-world) instances. We use a diverse set of parameters
for the generators, and do not worry about too many similar
instances yet. The individual parameters may be interesting features
for the final selection and should be saved with the instance.

3. We devise a set of general instance features. For a graph, the number
of vertices and edges is such a feature.

4. If we have some solvers already available, we add their solutions,
bounds, and runtime as features. If the solver only yields solutions
for simple instances, but none for larger instances, this may also
be worth a feature. Such information can help to identify hard or
interesting instances. If all solvers take a long time, this is probably
a hard instance. If the standard deviation of the objective values
is high, this is probably an interesting instance that requires some
global optimization.

5. We create composite features that combine multiple features into
one, or normalize them. For example, the deviation of the objective
values mentioned in the previous step generally increase with
larger objective values. We can normalize them via dividing by the
best or mean objective value. If we combine multiple features into
one, as we did with the standard deviation of the objective values,
we may directly delete the original features if they only add little
additional information. We try to combine and reduce as many
features as possible because this eases the next steps.

6. We need to take care of incomplete features and missing values,
before we can compare the instances. We may need to split the
instance set if the features of larger instance sets are not comparable.
This might be the case if they have been generated by different
generators and the parameters prove to be important features.
In some cases, we may be able to extract this important feature
from the instance itself. If not, we can simply decide on a specific
number of instances from each generator and perform the selection
individually. We can also try to fill the missing values by interpola-
tion, which can be done simply by the mean value or by machine
learning based on the other features as a more complex route.

7. We look into the distributions and correlations of the features.
During this, we may notice some irregularities that allow us to
remove or combine some further features. We try to remove all
features that do not look promising such that we are only left with
around 10 features. Pair plots are also a great option to do so, see
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Figure 10.7.: Features of instances (based
on real data) shown with correlations in
a pair plot. We can directly see some non-
linear correlations and distributions.

Figure 10.7. If there are too many features, we may select a subset
of these and perform multiple comparisons.

8. We scale the features such that we can compute a useful distance
on the values. Using a standard scaler that moves the mean to
zero and scales the standard deviation to one is a great option.
This provides outliers with a larger distance to the other instances;
outliers can be interesting instances. Otherwise, we can use a simple
min-max-scaling. Min-max-scaling scales the values into the range
of 0 to 1, which can lose its expression in the presence of outliers.
The best option depends on the concrete feature.

9. We remove correlations by using a principal component analysis
(PCA) and by performing a dimensionality reduction. The number
of remaining dimensions should be as small as possible, as long as
the induced error does not become too high. This again needs some
fine-tuning. We can check the error either by common metrics or
simply by retransforming the features and comparing the pair plots,
see Figure 10.8. Having only few, e.g., three or four, dimensions
with low correlation by which to compute the distance makes the
selection much more robust. Due to the infamous curse of dimen-
sionality, the feature space gets much sparser with every additional
dimension. In a sparse feature space, the distance between any two
instances is large, and it is harder to perform a proper selection of
distant instances.

10. Perform a clustering with kMeans of the instances in the new space,
see Figure 10.9. The number of clusters should equal the desired
number of instances. From each cluster, select a random instance.
The clustering ensures we select instances from different areas of
the feature space. We can also select the center of the cluster instead
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Figure 10.8.: Using standard scaling and
a principal component analysis, we can
reduce the data to three dimensions by
removing linear correlations while only
introducing a small amount of error. The
right number of dimensions can differ
with different instances, but the smallest
possible should be chosen in order to
have a better distance function. Note that
features with strong but unimportant
and uncorrelated values can harm this
step. The new coordinates are in orange,
the original in blue.
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of a random instance, but the center will be more average than a
random instance.

11. We check the distribution of the instances and fine-tune the process,
if needed. We may also split this process for different classes of
instances, e.g., for small, medium, and large instances. If the classes
become too small, this process will of course not be much better
than random; but in this case, we can also select the instances by
hand.

Great tools in Python (2021) for performing these steps are:

▶ pandas for data management and manipulation.
▶ scikit-learn for scaling and dimensionality reduction.
▶ seaborn for nice and simple plots based on matplotlib.
▶ jupyter for interactive development, ideal for parameter-tuning.

Additionally great for documentation and sharing.

Future Work 10.1.

Can we develop a toolkit that combines all the important techniques
and provides a streamlined interface? Additionally, some interactive
visualization and manual selection tools may be very helpful.

The described approach drew inspiration from the works of Smith-Miles
et al. [261–267], who are working on the instance feature spaces, e.g.,
for performance prediction of algorithms and the Algorithm Selection
Problem [268]. One idea is to use evolutionary algorithms to evolve
interesting instances. This approach is also used to generate a diverse
instance set for Graph Coloring [267], but the focus is on discovering
novel instances rather than selecting a diverse set of limited size. A library
for instance space analysis is provided by MATILDA [269]. The primary
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Figure 10.9.: The clustering is based on
the Euclidean distance in the reduced
space. Each of the 10 clusters is shown
in its own color. This is also great for ex-
ploration, as we can see that the brown
instances are extreme in multiple fea-
tures. Selecting one instance per cluster
yields a diverse set.

differences between these techniques and our approach are:

▶ We are interested in actual instances and not the feature space.
▶ We do not have the actual algorithms. In fact, the algorithms will

evolve to fit the instances and not the other way around.

However, intervening the instance feature space and the instance genera-
tion is an approach that also has potential for benchmark creation. This
technique was not necessary for use, as we did not (yet) have issues with
a too sparse instance feature space.

10.5. Lessons Learned

Before discussing the individual competitions in detail, let us summarize
some lessons learned:

▶ Setting up a minimal server for processing uploads is reasonably
easy and quick, thanks to generic frameworks. Additional (op-
tional) elements that need a complicated integration or need to be
implemented from scratch, take up most of the development time.

▶ The complexity of instance selection and scoring can vary strongly
for different problems.

▶ Most of the submissions happen shortly before the deadline. While
the previous years always had some teams that started out early and
strong, the top three teams still usually changed position during
the last couple of day(s).

▶ Some teams struggle with the upload because their files are too large
or their connections too slow. An option is to allow the submission
of instances by email with a hash of the compressed archive. The
actual archive can be sent later via a link to a cloud provider. This
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provides a robust alternative to the regular submission, while still
allowing a fair evaluation. It is important to note that the date of an
email can easily be manipulated; instead the time of the reception
should be used.

▶ It is important to be predictable and transparent. Changing the
rules during a game does not feel fair to the participants, even if the
change benefits them. Depending on the magnitude of the change,
participants might be discouraged to the extent that they put forth
less effort in the competition, out of fear that their effort might be
in vain following a possible change of rules. Even providing an
auxiliary tool after the start of the competition can create discontent
among those who have already spent energy developing such a
tool themselves.
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This chapter gives an overview of the theoretical and practical aspects
of finding a simple polygon of minimum (Min-Area) or maximum
(Max-Area) possible area for a given set of 𝑛 points in the plane.
Both problems are known to be NP-hard and were the subject of the
2019 Computational Geometry Challenge, which presented the quest
of finding good solutions to more than 200 instances, ranging from
𝑛 = 10 all the way to 𝑛 = 1 000 000.

11.1. Introduction

The “CG:SHOP Challenge” (Computational Geometry: Solving Hard
Optimization Problems) originated as a workshop at the 2019 Compu-
tational Geometry Week (CG Week) in Portland, Oregon in June, 2019.
The goal was to conduct a computational challenge competition that
focused attention on a specific hard geometric optimization problem,
encouraging researchers to devise and implement solution methods that
could be compared scientifically based on how well they performed on a
database of instances. While much of computational geometry research
has targeted theoretical research, often seeking provable approximation
algorithms for NP-hard optimization problems, the goal of the CG Chal-
lenge was to set the metric of success based on computational results on
a specific set of benchmark geometric instances. The 2019 CG Challenge
focused on the problem of computing simple polygons whose vertices
were a given set of points in the plane.

11.1.1. Challenge Problem

The Traveling Salesman Problem (TSP) is one of the classic optimization
problems: For a given set of locations and pairwise distances, find a
shortest roundtrip that visits each position exactly once and returns to the
start. In a geometric setting, in which locations correspond to a given set
𝑃 of 𝑛 points in the plane, and distances between points are induced by
the Euclidean metric, it is a straightforward consequence of the triangle
inequality that an optimal tour corresponds to a simple polygon Pwith
vertex set 𝑃, such that P has minimum total perimeter length.

This geometric motivation makes it natural to consider simple polygons
with a given set of vertices that minimize another basic geometric measure:
the enclosed area. This was considered in the past in the context of surface
reconstruction, e.g., by O’Rourke [270]; as sketched in Section 11.2, there is
also a close connection to point separation, which has gained importance
in Artificial Intelligence. The same context has also raised interest in the
corresponding maximization problem: For a given set 𝑃 of 𝑛 points in the
plane, find a simple polygon Pwith vertex set 𝑃 of maximum possible

∗ A preliminary version [11] of this chapter was published on arXiv. Many thanks to Erik
Demaine, Sándor Fekete, Phillip Keldenich, and Joseph Mitchell for all their contributions.
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area. In the following, we refer to these two problems as Min-Area and
Max-Area, respectively.

Problem 11.1.1 (Min-Area and Max-Area)
Given: A set 𝑃 of 𝑛 points in the plane.
Goal: A simple polygon with vertex set 𝑃 of minimum (Min-Area) or
maximum (Max-Area) possible enclosed area.

There are a number of features that make these problems suitable for
optimization challenges, based on notable similarities to and differences
from the TSP. As shown by Fekete [271–273], both Min-Area and Max-
Area are NP-hard; however, while membership in NP for the Euclidean
TSP is a long-standing, famous open problem (e.g., Problem #33 in The
Open Problems Project [28]), it is straightforward for area optimization,
so issues of numerical stability and checking validity of solutions do not
come into play. On the other hand, edges in a polygon with small area
need not be short, as shown in Figure 11.1. This makes it challenging to
restrict potential neighbors of a point in a good polygonization, increasing
the difficulty of employing local search methods for efficient algorithms.
This explains an apparent practical distinction to the TSP: while provably
optimal solutions for TSP benchmark instances of considerable size have
been known for a while, exact methods for area optimization appear
more elusive.

Figure 11.1.: A point set 𝑃 and its only
minimum-area polygon P, containing
several long edges. (Example from [271,
273].)

11.1.2. Related Work

History and Background

The origins of the problem of finding area-optimal polygons can be traced
back at least to the early days of Computational Geometry (O’Rourke [270]
in 1980). Resolving the complexity was posed by Suri in 1989 at CCCG,
and restated in a different context by Mitchell [274] and Mitchell and
Suri [275].

Studying the set of possible polygonizations is of great interest in various
applications [276–280]. Auer and Held [281] gave methods for generating
random polygonizations. O’Rourke and Suri [282] raised the question of
estimating the number of polygonizations as a function of the number
𝑛 of points. At this point, this is known to lie between 4.642𝑛 [283] and
56𝑛 [284].



11.1. Introduction 245

Complexity

Fekete [271, 273] gave a proof of NP-completeness for both problems,
based on a reduction from Hamiltonicity of Planar Cubic Directed
Graphs, and generalized this proof to higher dimensions: For any fixed
1 ≤ 𝑘 ≤ 𝑑 and 2 ≤ 𝑑, it is NP-hard to find the polyhedron with
𝑘-dimensional faces of minimum total volume for given vertices in 𝑑-
dimensional space. He also showed that no polynomial-time approxima-
tion scheme (PTAS) exists for Min-Area and presented a 1

2 -approximation
algorithm for Max-Area [271, 272]. Moreover, he proved that the NP-
hardness of the minimization problem also applies for higher dimensions.
More specifically he showed that for given 1 ≤ 𝑘 ≤ 𝑑 and 2 ≤ 𝑑 it is
NP-hard to find the minimal volume polyhedron with 𝑘-dimensional
faces for given vertices.

Heuristics

Recent work was mainly focused on finding new heuristics for both
Min-Area and Max-Area. Taranilla et al. [285] proposed three different
heuristics. Peethambaran et al. [286, 287] proposed randomized and
greedy algorithms for Min-Area and 𝑑-dimensional variants of both
problems.

Other Challenges

The Open Problems Project (TOPP), maintained by Demaine, Mitchell
and O’Rourke [28], is a library of long-standing unsolved problems.
On the more practical side, there have been different efforts, based on
benchmark libraries, such as the TSPLIB [198]. Since 1990, the DIMACS
implementation challenges have addressed questions of determining
realistic algorithm performance where worst-case analysis is overly pes-
simistic and probabilistic models are too unrealistic. Since 1994, the
Graph Drawing (GD) community has held annual contests in conjunc-
tion with its annual symposium to monitor and challenge the current
state of the graph-drawing technology and to stimulate new research
directions for graph layout algorithm. More recently, a variety of imple-
mentation challenges have gained traction in the world of programming
and optimization, but not yet in the field of Computational Geometry.

11.1.3. Outcomes

The contest generated numerous contributions, both for Min-Area and
Max-Area. In the aftermath, the top teams were invited to describe their
methods in detailed papers, which form the substance of this special
issue.

▶ Julien Lepagnot, Laurent Moalic, Dominique Schmitt: Optimal area
polygonization by triangulation and ray-tracing [288]

▶ Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard: Greedy and
Local Search Solutions to the Minimum and Maximum Are [289]

▶ Nir Goren, Efi Fogel, Dan Halperin: Area-optimal polygonization
using simulated annealing [290]
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▶ Günther Eder, Martin Held, Steinpor Jasonarson, Philipp Mayer,
Peter Palfrader: 2-Opt moves and flips for area-optimal polygoniza-
tions [291]

▶ Natanael Ramos, Rai Caetan de Jesus, Pedro de Rezende, Cid de
Souza, Fabio Luiz Usberti: Heuristics for area optimal polygoniza-
tions [292]

In addition, there is one paper focusing on exact methods for computing
provably optimal solutions.

▶ Sándor P. Fekete, Andreas Haas, Phillip Keldenich, Michael Perk,
Arne Schmidt: Computing area-optimal simple polygonization [293]

In the rest of this survey paper, we provide a discussion of specific aspects
of mathematical connections between area optimization and grid points
(Section 11.2), approximation algorithms (Section 11.3), and an overview
of contest results (Section 11.4).

11.2. Pick’s Theorem and Integrality

For a simple polygon Pwith 𝑛 vertices, computing the Euclidean length
of its perimeter involves evaluating a sum of square roots, for which
membership in NP is a long-standing open problem [28]. This differs
from computing the area of P, which can be evaluated quite efficiently,
e.g., see O’Rourke [294]. An elegant combinatorial answer is given by
Pick’s theorem. (This also implies benign objective values, in particular
for vertices whose coordinates are all even numbers, as chosen in the
contest.)

Theorem 11.2.1 (Pick [295]) Let Pbe a simple polygon with integer vertices;
let 𝑖(P) be the number of grid points contained in the interior of P, and let
𝑏(P) be the number of grid points on the boundary of P. Then

Area(P) = 1
2
𝑏(P) + 𝑖(P) − 1.

Figure 11.2.: Pick’s theorem: A simple
grid polygon Pwith 𝑏(P) grid points on
its boundary and 𝑖(P) grid points in its
interior has area 1

2 𝑏(P) + 𝑖(P) − 1. (Here
shown for 𝑏(P) = 11 and 𝑖(P) = 6.)

There are several elegant ways to prove Pick’s theorem, three of which
can be found in [296–298]. For a discussion of alternative approaches
see the article by Niven and Zuckermann [299]. There are numerous
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generalizations to other than the orthogonal grid, e.g., by Ren and
Reay [300]; see Reeve [301] for a generalization to higher dimensions.

Pick’s theorem also provides a bridge to issues of point separation:
Maximizing the enclosed area amounts to finding a simple polygon that
captures as many additional grid points as possible, while minimizing
the area corresponds to excluding as many as possible. As the 𝑛 given
points must lie on the boundary of P, and only points within the convex
hull of 𝑃 come into play, we get the following lower and upper bounds
for the area.

Theorem 11.2.2 Let 𝑃 be a set of 𝑛 points in the plane that all have integer
coordinates. Let ℎ𝑖(𝑃) denote the number of points of the integer grid that are
not contained in 𝑃 and strictly inside the convex hull, and let ℎ𝑏(𝑃) be the
number of grid points not in 𝑃 that are on the boundary of the convex hull.

Then for any simple polygon P on the vertex set 𝑃, we have

𝑛

2
− 1 ≤ Area(P) ≤ 𝑛

2
+ ℎ𝑏(𝑃)

2
+ ℎ𝑖(𝑃) − 1.

Figure 11.3.: Lower and upper bounds on
polygon area, implied by Pick’s theorem:
For a set 𝑃 of grid points (bold), shown a
grid-empty simple grid polygon that con-
tains only the given points and a grid-full
polygon that contains all grid points of
the convex hull to the maximum possible
extent.

See Figure 11.3 for an illustration. Deciding whether either of these
bounds can be met is already NP-complete [273]. At the same time, they
motivate using the area of the convex hull as a reference, which was used
in the contest.

11.3. Approximation

Using the area of the convex hull as an upper bound can also be used for
approximating Max-Area.

Theorem 11.3.1 ([271]) Let 𝑃 be a set of 𝑛 points in the plane. We can
determine a simple polygon P on 𝑃 that has area larger than 1

2 Area(𝑃),
where Area(𝑃) denotes the area of conv(𝑃). This can be done in time
𝑂(𝑛 log 𝑛).

Proof. Let 𝑝0 be a point on the convex hull of 𝑃. In time 𝑂(𝑛 log 𝑛), sort
the points 𝑝𝑖 of 𝑃 by the slope of the lines 𝑙(𝑝0 , 𝑝𝑖), such that the neighbors
of 𝑝0 on the convex hull are the first and the last point, respectively. If
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Figure 11.4.: A 1
2 -approximation for Max-

Area: A star-shaped polygon P1 around
a hull point 𝑝0 (left) and a second simple
polygon P2 covering the rest of the con-
vex hull.

there is a set of points for which the slope is the same, break the tie by
ordering them in increasing distance from 𝑝0, except when those points
have the smallest of all slopes, in which case we take them in order of
decreasing distance from 𝑝0. Connecting the points 𝑝𝑖 in this order yields
a simple polygon P1 on 𝑃.

If Area(P1) > 1
2 Area(𝑃), we are done. Suppose this is not the case. Then

the set Q := conv(𝑃) \P1 has area at least 1
2 Area(𝑃). Now it is not hard

to see that there is a simple polygon P2 that contains Q, implying the
claim.

Figure 11.5.: The approximation factor
of 1

2 for the algorithm is tight.

As shown in Figure 11.5, 1
2 is a tight bound for this approach, even if all

possible choices for 𝑝0 are tested. Moreover, it was shown in [271] that it
is NP-complete to decide whether there is a simple polygon that contains
strictly more than 2

3 of the area of the convex hull;

At this time, no constant-factor approximation algorithm for Min-Area is
known, hinting at a higher level of difficulty of the minimization problem.
It may well be the case that no such approximation can be computed in
polynomial time.

11.4. Contest and Outcomes

The 2019 Challenge was well-received, with 28 teams from all over the
world and a range of different scientific areas competing; participation
was open to anyone. The contest itself was run through a dedicated
server at TU Braunschweig, hosted at https://cgshop.ibr.cs.tu-bs.
de/competition/cg-shop-2019/. It opened on February 28, 2019, and
closed on May 31, 2019.

11.4.1. Instances

The contest started with a total of 247 benchmark instances, as follows.
Each of these instances consisted of 𝑛 points in the plane with integer
coordinates. For 𝑛 ∈ 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200,

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2019/
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2019/
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300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, 9000, 10 000, 20 000, 30 000, 40 000, 50 000, 60 000, 70 000, 80 000,
90 000, 100 000}, there were six instances each. In addition, there is one
instance of size 𝑛 = 1 000 000.

The instances were of three different types; see Fekete et al. [21] for a more
detailed description of how to generate benchmark instances through
illumination maps.

▶ uniform: uniformly distributed at random from a square.
▶ edge: randomly generated according to the distribution of the rate

of change (the “edges”) from various images.
▶ illumination: randomly generated according to the distribution of

brightness of an image (such as an illumination map).

11.4.2. Evaluation

The comparison between different teams was based on an overall score.
For each instance, this score is the ratio given by the achieved area divided
by the area of the convex hull; thus, the score is a number between 0 and
1. The total score achieved by each team was the sum of all 247 individual
instance scores. Feasibility of submitted solutions was checked at the
time of upload; for instances without a feasible solution, a default score
of 1 (for minimization) or 0 (for maximization) was used. For multiple
submissions by the same team, only the best feasible solution submitted
was used to compute the score. In case of ties, the tiebreaker was set to
be the date/time a specific score was obtained. This turned out not to be
necessary.

11.4.3. Results

In the end, the top 10 in the leaderboard looked as shown in Table 11.1;
note that according to the scoring function, a lower score is better for
Min-Area, while a higher score is better for Max-Area. The progress over
time of each team’s score can be seen in Figure 11.6a (for Min-Area) and
Figure 11.6b (for Max-Area).

Table 11.1.: The top of the final leaderboard. Shown are the scores in both categories, along with the achieved average percentages of
the convex hull of points. Teams CGA and UNICAMP were overall tied, according to different positions for Min-Area and Max-Area,
as were mperk and AQ_PG. The teams mperk (Michael Perk, TU Braunschweig) and zhengdw (David Zheng, University of British
Columbia) were both individual, first-year Masters students.

Rk. Team Score (Min) Score (Max) # best (unique) # best (unique)

Min sols. Max sols.

1 OMEGA/Mulhouse (FR) 23.393 ( 9.47%) 227.247 (92.00%) 223 (181) 184 (138)
2 lcrombez/Clermont (FR) 25.751 (10.43%) 226.691 (91.78%) 66 (23) 109 (4)
3 cgl@tau/Tel Aviv (IS) 35.289 (14.29%) 206.612 (83.65%) 13 (0) 12 (0)
4 CGA/Salzburg (AU) 36.069 (14.60%) 197.568 (79.99%) 26 (0) 23 (0)
4 UNICAMP/Campinas (BR) 46.432 (18.80%) 201.839 (81.72%) 3 (0) 3 (0)
6 mperk/Braunschweig (GE) 68.431 (27.70%) 191.483 (77.52%) 24 (0) 23 (0)
6 L’Aquila-Perugia (IT) 57.373 (23.23%) 179.752 (72.77%) 19 (0) 18 (0)
8 Stony Brook (US) 85.179 (34.49%) 162.031 (65.60%) 1 (0) 1 (0)
9 zhengdw (CA) 89.437 (36.21%) 154.723 (62.64%) 0 (0) 1 (0)

10 TGP/Eindhoven (NL) 112.561 (45.57%) 154.548 (62.57%) 18 (0) 26 (0)
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The top 5 finishers were invited for contributions to this special issue, as
follows.

1. Team OMEGA/Mulhouse (France): Julien Lepagnot, Laurent Moalic,
and Dominique Schmitt [288].

2. Team lcrombez/Clermont Auvergne (France): Loïc Crombez, Guil-
herme D. da Fonseca, and Yan Gerard [289].

3. Team cgl@tau/Tel Aviv (Israel): Nir Goren, Efi Fogel, and Dan
Halperin [290].

4. Team CGA/Salzburg (Austria): Günther Eder, Martin Held, Steinthor
Jasonarson, Philipp Mayer, and Peter Palfrader [291].

5. Team UNICAMP/Campinas (Brazil): Natanael Ramos, Rai Cae-
tan de Jesus, Pedro de Rezende, Cid de Souza, and Fabio Luiz
Usberti [292].

Figure 11.6a shows the development of total scores over time for Min-Area
and all teams; it can be seen that OMEGA passed lcrombez shortly before
the deadline, with cgl@tau just squeezing by CGA. A similar and even
tighter outcome between OMEGA and lcrombez for Max-Area can be
seen in Figure 11.6b; for that problem, cgl@tau also placed third, but
UNICAMP managed to beat out CGA for fourth place. Thus, the ranking
was consistent for both Min-Area and Max-Area, except for Campinas
doing better than Salzburg in Max-Area, so they both shared fourth
place. All five teams engineered their solutions with the use of a variety
of specific tools. Details of their methods and the engineering decisions
they made are given in their respective papers.

Figure 11.7a shows the spread of results for all Min-Area instances; it can
be seen that there is a strong deviation over all instance sizes, even for
the small ones. This is surprising as one would expect simple heuristics
to perform reasonably well for small instances; however, it appears that
even for very small instances with 10 points of Min-Area, more advanced
ideas are necessary to achieve good results. (See the contribution by
Fekete et al. [293] for a detailed study of exact methods.) At around 5000
points, the mean score drops visibly; the best teams are able to obtain
nearly the same score for all instance sizes above 50 points. Surprisingly,
the effect is stronger for uniform point sets. However, when normalizing
the scores in Figure 11.8a we see that this actually seems to be an effect of
the bound quality. When using the best available solution as reference,
the image-based instances show more of a struggle for the teams to keep
up. A similar overview for Max-Area is given in Figure 11.7b. Here the
deviation is very small for the small instances, showing that all teams
where able to obtain reasonably good solutions for small instances. The
deviation increases with the problem size until around 300 points, after
which it remains homogeneous but smaller than for Min-Area. Like for
Min-Area, the best teams obtained nearly equal scores for all instances
sizes, while the mean score drops visibly after 900 points. Again, the
effect is stronger for uniform point sets, but also remains so after using
the best solution as reference in Figure 11.8b.
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Figure 11.6.: Total score over time for Min-Area and Max-Area of the participating teams. The team names of the ten leading teams can
be deduced from Table 11.1. We see teams that started early and strong and teams that just started to submit solutions shortly before the
deadline. The last days had especially many strong jumps.
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Figure 11.7.: Distribution of best scores over all instances. The middle line shows the median. The boxes show the quartiles and the
whiskers the min and max (except possibly outliers as additional dots). If there were multiple instances per size, the mean score for those
is used. Only submitted instances are considered such that larger instances are potentially based on fewer data points. For Max-Area The
image based instances have a higher variance but also a higher median score.
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Figure 11.8.: Normalized score distribution by putting it in relation to the best solution. Let 𝑏 denote the best score for an instance, then
the range [0, 𝑏] is scaled to [0, 1] for Max-Area and the range [𝑏, 1] is scaled to [0, 1] for Min-Area. This removes the influence of the
bound quality from the score. We see a significant difference for Min-Area but only a small difference for Max-Area.
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11.5. Conclusions

The 2019 CG Challenge motivated a considerable number of teams to
engage in intensive optimization studies. This success has not only led to
practical progress on the problem of area optimization, but also turned
the CG Challenge into a continuing feature of CG Week, spawning
considerable work through the 2020 Challenge problem (Minimum
Convex Partition) and the 2021 Challenge problem (Coordinated Motion
Planning). This promises to motivate further work on the involved
problems, as well as other practical geometric optimization work. We
are confident that this will further strengthen the bridges between
optimization theory and practical algorithm engineering.
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This chapter gives an overview of the 2020 Computational Geometry
Challenge, which targeted the problem of partitioning the convex
hull of a given planar point set 𝑃 into the smallest number of convex
faces, such that no point of 𝑃 is contained in the interior of a face.

12.1. Introduction

The 2019 CG Challenge focused on the problem of computing minimum-
area polygons whose vertices were a given set of points in the plane. This
Challenge generated a strong response from many research groups, from
both the Computational Geometry and the combinatorial optimization
communities, and resulted in a lively exchange of solution ideas.

For CG Week 2020, the second CG:SHOP Challenge became an event
within the CG Week program, with top performing solutions reported in
the Symposium on Computational Geometry proceedings. The schedule
for the Challenge was advanced earlier, to give an opportunity for
more participation, particularly among students, e.g., as part of course
projects.

The specific problem that formed the basis of the 2020 CG Challenge
was the following:

Problem 12.1.1 (Minimum Convex Partition (MCP) in the plane.)
Given: A set 𝑃 of 𝑛 points in the plane.
Goal: A plane graph with vertex set 𝑃 (with each point in 𝑃 having positive
degree) that partitions the convex hull of 𝑃 into the smallest possible number
𝑢(𝑃) of convex faces.

Note that collinear points are allowed on face boundaries. Each internal
face angle at each point of 𝑃 is at most 𝜋.

12.2. Related Work

The problem of computing a partition of a simple polygon, having 𝑛
vertices, into a minimum number of convex pieces has been well studied.
If Steiner points are allowed to be added, then Chazelle and Dobkin [302]
gave an algorithm, based on dynamic programming, which computes
exactly an optimal solution in time 𝑂(𝑛 + 𝑟3), where 𝑟 is the number
of reflex vertices of the given polygon. For decompositions using only
diagonals (no Steiner points), Greene [303] gave an 𝑂(𝑟2𝑛2) algorithm,
also based on dynamic programming. Keil [304] improved the running

∗ A preliminary version [12] of this chapter was published on arXiv. Many thanks to the
co-organizers Erik Demaine, Sándor Fekete, Phillip Keldenich, and Joseph Mitchell for all
their contributions.
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time to 𝑂(𝑟𝑛2 log 𝑛) and gave a proof of NP-hardness for polygons
with holes; later, Keil and Snoeyink [305] improved the complexity to
𝑂(𝑛 + 𝑟2 min{𝑟2 , 𝑛}).

The complexity of Minimum Convex Partition (MCP) in the plane was
unknown when the 2020 CG Challenge began in September 2019. In
November 2019, Grelier announced a proof of NP-hardness for the case of
planar point sets in not necessarily general position [306]. The complexity
of the MCP for points in general position is still open at the time of
this writing. On the positive side, a number of positive algorithmic
results have been known for a while, assuming special properties of
𝑃. For point sets that can be decomposed into a limited number of
convex layers, Fevens, Meĳer and Rappaport [307] gave a polynomial-
time algorithm. Assuming that no three points are collinear, Knauer and
Spillner [308] gave a 3-approximation algorithm that runs in 𝑂(𝑛 log 𝑛),
and a 30

11 -approximation of complexity 𝑂(𝑛2).

Worst-case bounds have also been considered; for this purpose, define
𝑈(𝑛) as the maximum number 𝑢(𝑃) over all non-degenerate point sets 𝑃
with 𝑛 ≥ 3. In 1998, Urrutia [309] conjectured that𝑈(𝑛) ≤ 𝑛+1. Neumann-
Lara, Rivera-Campo and Urrutia [310] showed that 𝑈(𝑛) ≤ 10𝑛−18

7 ;
Lomeli-Haro [311] showed that𝑈(𝑛) ≤ 10

7 𝑛 − ℎ, where ℎ is the number
of points on the convex hull. This bound was improved by Hosono [312]
to 𝑈(𝑛) ≤ 7(𝑛−3)

5 , and later by Sakai and Urrutia [313] to 𝑈(𝑛) ≤ 4
3 − 2.

Conversely, Knauer and Spillner [308] showed that𝑈(𝑛) ≥ 𝑛 + 2, which
was improved by García-López and Nicolás [314] to𝑈(𝑛) ≥ 12

11𝑛 − 2.

Aiming for solutions to benchmark instances, Barboza, Souza and
Rezende [315] gave an integer programming formulation of the MCP,
and showed that this can be used to solve instances with up to 50 points
to provable optimality. Recently, after the challenge, Cambazard and
Catusse [316] proposed an improved formulation that can solve instances
with up to 100 points to provable optimality and provide lower bounds
for instances with up to 300 points.

12.3. Instances

The contest started with a total of 247 benchmark instances, as follows.
Each of these instance consisted of 𝑛 points in the plane with integer
coordinates. For 𝑛 ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10 000, 20 000, 30 000, 40 000, 50 000, 60 000, 70 000,
80 000, 90 000, 100 000}, there were six instances each. In addition, there
is one instance of size 𝑛 = 1 000 000.

The instances were of four different types:

▶ uniform: uniformly at random from a square.
▶ edge: randomly generated according to the distribution of the rate

of change (the “edges”) of an image.
▶ illumination: randomly generated according to the distribution of

brightness of an image (such as an illumination map).
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▶ orthogonally collinear points: randomly generated on an integral
grid to have a lot of collinear points (similar to PCBs and distorted
blueprints).

These instances were based on point sets that were originally generated
for the 2019 Challenge; as such, they tended to be in general position.
To account for this and the progress in complexity (which was based
on instances with collinear points), a further 99 instances with larger
numbers of collinear points were added in January 2020.

12.4. Evaluation

The comparison between different teams was based on an overall score. For
each instance, this score is a number between 0 and 1, with higher scores
corresponding to better solutions. The trivial solution, i.e., a triangulation,
corresponds to a score of 0, and a solution without any edges, which is,
of course, infeasible, corresponds to a score of 1.

For an instance, i.e., a point set 𝑃 consisting of 𝑛 points, let 𝑐 be the
number of points on the convex hull of 𝑃. Observe that any triangulation
of 𝑃 is a convex partition with 2𝑛 − 2 − 𝑐 bounded faces and 3(𝑛 − 1) − 𝑐
edges. Moreover, any convex partition Π can be obtained by starting with
a triangulation containing its edges, and removing the excess edges one
by one. In this process, removing a single edge also decreases the number
of bounded faces by exactly 1. Thus, any solutionΠwith 𝑓 = 2𝑛−2− 𝑐− 𝑠
faces for some 𝑠 ≥ 0 has 𝑚 = 3(𝑛 − 1) − 𝑐 − 𝑠 edges and vice versa. This
allows using the number 𝑚(Π) of edges in a solution Π instead of the
number of faces to determine the score of Π as

score(Π) :=
𝑠(Π)

3(𝑛 − 1) − 𝑐 ,

where 𝑠(Π) = 3(𝑛−1)− 𝑐−𝑚(Π). In other words, the score for a solution
to an instance 𝑃 is the fraction of edges removed from a triangulation of
𝑃.

The total score achieved by each team was the sum of all individual
instance scores; only the best feasible solution submitted was used to
compute the score. Participation required submitting feasible solutions.
Feasibility was checked at the time of upload. Failing to submit a feasible
solution for an instance resulted in a default score of 0 for that instance.

In case of ties, the tiebreaker was set to be the time a specific score was
obtained. This turned out not to be necessary.

12.5. Categories

The contest was run in an Open Class, in which participants could use any
computing device, any amount of computing time (within the duration
of the contest) and any team composition. In the Junior Class, a team
was required to consist exclusively of participants who were eligible
according to the rules of CG:YRF (the Young Researchers Forum of CG
Week), defined as not having defended a formal doctorate before 2018.
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The demand for an additional Limited Class (to be run on a specific server
that was to be uniform for all participants) turned out to be too low to
justify the additional effort.

12.6. Server and Timeline

The contest itself was run through a dedicated server at TU Braun-
schweig, hosted at https://cgshop.ibr.cs.tu-bs.de/competition/
cg-shop-2020/. It opened at 18:00 CEDT (noon, EDT) on September 30,
2019, and closed at 24:00 (midnight, AoE), February 14, 2020.

12.7. Outcomes

A total of 21 teams participated in the contest. In the end, the top 10 in
the leaderboard looked as shown in Table 12.1; note that according to the
scoring function, a higher score is better.

The progress over time of each team’s score can be seen in Figure 12.1.

Clearly, the outcome was quite tight between the top teams; in particular,
Team UBC and Omega were only separated by 0.02 % in their respective
scores. As can be seen from Figure 12.2, OMEGA found very slightly
better solutions for numerous instances (which is also reflected by the
high number of unique best solutions in Table 12.1), while Team UBC
found significantly better solution for six of the instances. The latter
was sufficient for the overall win. Whether the later added orthogonal
instances did change the outcome is questionable, as can be seen in
Figure 12.3. While the new instances did allow more optimization and
larger convex areas, nearly all teams were able to do so and the solution
variance in these instances is actually lower than for the other instances.

The top 3 finishers in the Open Class were invited for contributions in
the 2020 SoCG proceedings, as follows.

Table 12.1.: The top of the final leaderboard. “Best solutions” are the best found by any participating team, which does not exclude the
possibility of better solutions. “Unique best” solutions are those that were not found by any other team.

Position Team Score # best # unique best

solutions solutions

1 Team UBC 175.172880 209 11
2 OMEGA 175.130597 297 126
3 CGA-Sbg 175.040207 187 0
4 Les Shadoks 174.695586 160 6
5 G-SCOP 174.543068 138 0
6 Min2Win@Zurich 174.384784 121 0
7 TUFUnky4you 173.973716 100 0
8 Team Technion 173.621857 99 0
9 Sapucaia, de Rezende, de Souza 170.939574 88 0

10 ucsbtheorylab 169.975180 76 0

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020/
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020/
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Figure 12.1.: Total score over time for
the best ten teams. The jump in the last
quarter is partially due to the extended
instance set.

1. Team UBC: Da Wei Zheng, Jack Spalding-Jamieson and Brandon
Zhang [317].

2. Team OMEGA: Laurent Moalic, Dominique Schmitt, Julien Lepag-
not and Julien Kritter [318].

3. Team CGA-Sbg: Günther Eder, Martin Held, Stefan de Lorenzo
and Peter Palfrader [319].

Consisting only of students, Team UBC was also the runaway winner of
the Junior Class.

All three teams engineered their solutions based, broadly, on variants
of local search methods, with the use of randomization and constraint
programming [317], genetic approaches [318], and tailored initial decom-
positions [319]. Details of their methods and the engineering decisions
they made are given in their respective papers.

12.8. Conclusions

The 2020 CG:SHOP Challenge motivated a considerable number of
teams to engage in intensive optimization studies. Not only did this
lead to practical developments, it also triggered theoretical progress, as
demonstrated by Grelier [306]. We are confident that this will motivate
further work on the problem of Minimum Convex Partitions, as well as
other practical geometric optimization work.



260 12. CG:SHOP Challenge 2020

−0.010 −0.005 0.000 0.005 0.010 0.015 0.020

Score difference from mean

Image

Orthogonal

Uniform

Small

Medium

Large

All

In
st

an
ce

ty
p

e

Higher is better

Team

CGA-Sbg

G-SCOP

Les Shadoks

OMEGA

Team UBC

Figure 12.2.: Differences in the scores for individual instances for the top teams compared to their mean. We can see that Team OMEGA is
best in more instances but only by reasonably small margins while Team UBC is significantly better in a few large image-based instances
that make the difference.

20
0

40
0

60
0

80
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

15
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

65
00

0

70
00

0

80
00

0

90
00

0

10
00

00

10
00

00
0

Number of points

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re
s

(h
ig

h
er

is
b

et
te

r)

Higher is better

Type

Image

Orthogonal

Uniform

Figure 12.3.: Distribution of the best instance scores of the teams over size. Only scores for submitted instances are considered such
that larger instances are based on slightly fewer points. A lower variance indicates that all teams had very similar solutions and their
approaches performed similar. A large variance indicates that the approaches of the teams performed very differently. The image-based
and uniform instances are barely distinguishable in the score distribution. Thus, the approaches of the teams probably performed similar
well on both types. The orthogonal instances on the other hand look very different. Surprisingly, the variance is much lower while
allowing much more optimization as visible by the higher mean score. Based on this, it is questionable whether adding the orthogonal
instances did really influence the competition much.



CG:SHOP Challenge 2021
∗ 13.

13.1 Introduction . . . . . . 261

13.2 The Challenge . . . . . 261

13.2.1 The Problem . . . . . . . 261
13.2.2 Related Work . . . . . . 262
13.2.3 Instances . . . . . . . . . 264
13.2.4 Evaluation . . . . . . . . 266
13.2.5 Categories . . . . . . . . 266
13.2.6 Server and Timeline . . 266
13.3 Outcomes . . . . . . . . 266

13.4 Conclusions . . . . . . . 268

This chapter gives an overview of the 2021 Computational Geometry
Challenge, which targeted the problem of optimally coordinating a
set of robots by computing a family of collision-free trajectories for a
set 𝑆 of 𝑛 pixel-shaped objects from a given start configuration to a
desired target configuration.

13.1. Introduction

For CG Week 2020, the second CG:SHOP Challenge became an event
within the CG Week program, with top performing solutions reported in
the Symposium on Computational Geometry proceedings. The schedule
for the Challenge was advanced earlier, to give an opportunity for
more participation, particularly among students, e.g., as part of course
projects.

The third edition of the Challenge in 2021 continued the 2020 format,
leading to contributions in the SoCG proceedings.

13.2. The Challenge: Coordinated Motion

Planning

Coordinating the motion of a set of objects is a fundamental problem
that occurs in a large spectrum of theoretical contexts and practical
applications. A typical task arises from relocating a large collection of
agents from a given start into a desired goal configuration efficiently,
while avoiding collisions between objects or with obstacles.

13.2.1. The Problem

The specific problem that formed the basis of the 2021 CG Challenge was
the following; see Figure 13.1 for a simple example.

Problem 13.2.1 (Coordinated Motion Planning of unit squares.)
Given: A set of 𝑛 axis-aligned unit-square robots in the plane, a set 𝑆 =

{𝑠1 , . . . , 𝑠𝑛} of 𝑛 distinct start pixels (unit squares) of the integer grid, and a
set𝑇 = {𝑡1 , . . . , 𝑡𝑛} of 𝑛 distinct target pixels of the integer grid. In addition,
there may be a set of obstacles, consisting of a number of stationary, blocked
pixels that cannot be used by robots at any time.

Goal: The task is to compute a feasible set of trajectories for all 𝑛 robots,

∗ A preliminary version [13] of this chapter was published on arXiv. Many thanks to
the co-organizers Sándor Fekete, Phillip Keldenich, and Joseph Mitchell for all their
contributions.
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with the trajectory for robot 𝑖 moving it from 𝑠𝑖 to 𝑡𝑖 , such that the overall
schedule is optimal with respect to an objective function.

In order to be feasible, a trajectory must satisfy a number of conditions.
During each unit of time, each robot can move (at unit speed) in a
direction (north, south, east or west) to an adjacent pixel, provided the
robot remains disjoint from all other robots during the motions. This
condition has to be satisfied at all times, not just when robots are at pixel
positions. For example, if there are robots at each of the two adjacent
pixels (𝑥, 𝑦) and (𝑥 + 1, 𝑦), then the robot at (𝑥, 𝑦) can move east into
position (𝑥 + 1, 𝑦) only if the robot at (𝑥 + 1, 𝑦)moves east at the same
time, so that the two robots remain in contact, during the movement, but
never overlap.

The contest was run on two different objective functions, as follows.

MAX: Minimize the makespan, i.e., the time until all robots have reached
their targets.

SUM: Minimize the total sum of distances traveled by all robots.

Figure 13.1.: A feasible sequence of posi-
tions that minimizes both makespan and
total distance. Robot positions are shown
by circles, target positions by squares.
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13.2.2. Related Work

Coordinating the motion of many agents plays a central role when dealing
with large numbers of moving robots, vehicles, aircraft, or people. How
can each agent choose an efficient route that avoids collisions with other
agents as they simultaneously move to their targets? These basic questions
arise in many applications, such as ground swarm robotics [320, 321],
aerial swarm robotics [322, 323], air traffic control [324], and vehicular
traffic networks [325, 326].

Multi-robot coordination dates back to the early days of robotics and
Computational Geometry. The seminal work by Schwartz and Sharir [327]
from the 1980s considers coordinating the motion of disk-shaped objects
among obstacles. Their algorithms are polynomial in the complexity
of the obstacles, but exponential in the number of disks. Hopcroft et
al. [328] and Hopcroft and Wilfong [329] proved PSPACE-completeness of
moving multiple robots to a target configuration, showing the significant
challenge of coordinating many robots.

There is a vast body of other related work dealing with multi-robot motion
planning, both from theory and practice. For a more extensive overview,
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see [330]. In both discrete and geometric variants of the problem, the
objects can be labeled, colored, or unlabeled. In the labeled case, the objects are
all distinguishable and each object has its own, uniquely defined target
position. In the colored case, the objects are partitioned into 𝑘 groups
and each target position can only be covered by an object with the right
color. This was considered by Solovey and Halperin [331], who present
and evaluate a practical sampling-based algorithm. In the unlabeled case,
objects are indistinguishable and target positions can be covered by any
object.

This scenario was first considered by Kloder and Hutchinson [332], who
presented a practical sampling-based algorithm. Turpin et al. [333] give
an algorithm for finding a solution in polynomial time, if one exists.
This is optimal with respect to the longest distance traveled by any one
robot, but only holds for disk-shaped robots under additional restrictive
assumptions on the free space. For unit disks and simple polygons, Adler
et al. [334] provide a polynomial-time algorithm under the additional
assumption that the start and target positions have some minimal distance
from each other. Under similar separability assumptions, Solovey et
al. [335] provide a polynomial-time algorithm that produces a set of
paths that is no longer than OPT + 4𝑚, where 𝑚 is the number of robots
and OPT is the total length of the paths in an optimal solution. However,
they do not consider the makespan, but only the total path length. On
the negative side, Solovey and Halperin [336] prove that the unlabeled
multiple-object motion planning problem is PSPACE-hard, even when
restricted to unit square objects in a polygonal environment.

There is also a wide range of practical related work. Self-configuration of
robots as active agents was studied by Naz et al. [337]. A basic model
in which robots are used as building material was introduced by De-
rakhshandeh et al. [221, 338]. This resembles Claytronics robots like
Catoms; see Goldstein and Mowry [339]. In more recent work, Tha-
lamy et al. [340] consider using scaffolding structures for asynchronous
reconfiguration.

For an instance of parallel reconfiguration, a lower bound for the time
required for all robots to reach their targets is the time it takes to move
just one robot to its target in the absence of other robots, i.e., by the
maximum distance between a robot’s origin and target. Moving a dense
arrangement of robots to their targets while avoiding collisions may
require substantially more time than this lower bound. This motivates
the stretch factor, which is defined to be the ratio of the time taken by a
parallel motion plan divided by the simple lower bound.

In recent work, Demaine et al. [223, 330] provide several fundamental
insights into these problems of coordinated motion planning for the
scenario with labeled robots. They develop algorithms that (under rela-
tively mild assumptions on the separation between robots, slightly more
generous than provided in the Challenge) achieve constant stretch factors
that are independent of the number of robots. Thus, these algorithms
provide an absolute performance guarantee on the makespan of the
parallel motion schedule, which implies that the schedule is a constant-
factor approximation of the best possible schedule. For densely packed
arrangements of robots (without separation assumptions), they proved
that a constant stretch factor is no longer possible, and gave upper and
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lower bounds on the worst-case stretch factor. See Figure 13.2 for an
illustration.

Figure 13.2.: Parallel reconfig-
uration, established by [223,
330]: See https://www.ibr.cs.
tu-bs.de/users/fekete/Videos/
CoordinatedMotionPlanning.mp4 for a
video [224].

(a) Start configuration. (b) A parallel reconfiguration move.

(c) A parallel reconfiguration move. (d) Target configuration.

13.2.3. Instances

An important part of any challenge is the creation of suitable instances.
If the instances are easy to solve to optimality, the challenge becomes
trivial. If instances require a huge amount of computation to find any
decent solutions, the challenge may heavily favor teams that can afford
better computation equipment. The same is true if the set of instances
becomes too large to manage with a single (or few) computers.

A priori, it is difficult to tell how hard finding a good solution to an
instance is and which parameters influence the difficulty of solving an
instance (and in what way). Therefore, it is important to create a set of
instances that are diverse with respect to parameters that are likely to
influence their difficulty.

To create interesting and challenging instances, we thus developed an
instance generator that can be tuned by adjusting several parameters to
create diverse instances. Basic parameters control the size of the map, the
density to which the map is filled with robots, and the distribution func-
tions for start and target positions. For the distribution functions, we used
uniform distributions and distributions based on various images, such
as microscope images of bacteria colonies. The image-based instances
often have interesting, natural patterns; their accumulations of robots in
some areas were expected to yield challenging instances. Additionally,

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
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we created artificial bottlenecks and accumulations of robots by inserting
obstacles and clusters of robots to increase the difficulty.

Obstacles are created by randomly placing rectangles with (truncated)
normally distributed sizes. Any area that is completely surrounded by
obstacles (i.e., any hole in the union of obstacle rectangles) also becomes
an obstacle to ensure that instances remain feasible. Despite its simplicity,
this procedure is able to create various interesting obstacles after some
parameter tuning; see Figure 13.3 for an example.
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Figure 13.3.: A visualization of two in-
stances with obstacles (dark pixels). Start
and target positions of robots are indi-
cated by red disks and green squares.

The idea of robot clusters is to have groups of robots that are close to
each other in the start and target configurations, but have to travel a
significant distance as a group. During its motion, such a robot cluster
may have to pass through narrow obstacles or may clash with other
clusters, yielding interesting conflicts. Robot clusters are created by
specifying the desired number of clusters and the parameters of a normal
distribution controlling their size. For each cluster, a start and a target is
randomly selected according to the distribution functions controlling the
robots’ start and target positions. A corresponding number of robots is
then distributed within size-dependent windows around the start and
target positions of the cluster. These windows may be too small to contain
the start and target positions due to obstacles or robots that have already
been placed; in that case, we retry with a larger window.

As described above, certain parameters (such as the density) can be
controlled directly by our generator. To ensure that our instances are
diverse even with respect to parameters for which this is not possible,
we generated a large set of instances by selecting a diverse set of possible
values for each parameter of our generator and then generating several
instances for each possible combination of these parameter values.

This resulted in a set of more than 10 000 candidate instances from which
we then selected the challenge instances as follows. We measured several
properties for each of the generated instances, including the number of
robots, the density, the number of robot clusters generated, the number
of robots that were part of a robot cluster and the volume and free area of
the map. Based on these properties, we then defined and tuned a distance
function between the instances and used a greedy dispersion algorithm to
select a total of 200 diverse instances from the candidates; see Figure 13.6
for an overview of the distribution of some important properties across
the selected instances. See Section 10.4 for a more detailed explanation of
such a procedure.
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An analysis of the difficulty regarding these various parameters can be
seen at the end in Figures 13.7 and 13.8.

13.2.4. Evaluation

The contest was run on a total of 203 instances, 3 of which were small,
manually generated instances. For either objective function, a team’s
score for an instance 𝐼 is the ratio 𝐿/𝑉 between 𝐿, the objective value of
the best submitted solution for 𝐼, and 𝑉 , the best objective value of any
valid solution for 𝐼 submitted by the team. The score for each instance is
thus a number between 0 and 1, with 1 being the score awarded to the
teams with the best submitted solution and 0 being a default score. As
a consequence, the total score is a number between 0 and 203 for either
contest, where 203 is best possible. For each contest (MAX and SUM),
participants were compared based on their total scores; the winner for
each contest was the one with the highest score.

In case of ties, the tiebreaker was set to be the time a specific score was
obtained. This turned out not to be necessary.

13.2.5. Categories

The contest was run in an Open Class, in which participants could use any
computing device, any amount of computing time (within the duration
of the contest) and any team composition. In the Junior Class, a team
was required to consist exclusively of participants who were eligible
according to the rules of CG:YRF (the Young Researchers Forum of CG
Week), defined as not having defended a formal doctorate before 2019.

13.2.6. Server and Timeline

The contest itself was run through a dedicated server at TU Braun-
schweig, hosted at https://cgshop.ibr.cs.tu-bs.de/competition/
cg-shop-2021/. It opened at 00:00 AoE on November 20, 2020, and
closed at 24:00 (midnight, AoE), February 15, 2021.

13.3. Outcomes

A total of 17 teams submitted solutions. In the end, the leaderboard for
the top 10 teams in both categories looked as shown in Table 13.1 and
Table 13.2; note that according to the scoring function, a higher score is
better.

The progress over time of each team’s score can be seen in Figure 13.5;
the best solutions for all instances (displayed by score) can be seen in
Figure 13.4.

There were three clear front-runners, with Team Shadoks placing first
and third in MAX and SUM, respectively; Team UNIST came in second
in both categories, while Team gitastrophe placed third and first in MAX
and SUM. A closer look at the scores reveals that Team Shadoks achieved

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021/
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021/
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Position Team Score # best solutions

1 Shadoks 202.9375 202
2 UNIST 174.0180 14
3 gitastrophe𝐽 159.5472 24
4 S10ppy J035𝐽 109.2778 3
5 École Polytechnique𝐽 90.8213 3
6 TUeSWarM𝐽 83.0897 7
7 JoJo𝐽 75.2449 6
8 BlueTeamTechnion𝐽 65.0906 7
9 Lasteam𝐽 41.6065 1

10 Kleinkariert𝐽 36.0898 0

Table 13.1.: The top of the final leader-
board for MAX. “Best solutions” are the
best found by any participating team,
which does not exclude the possibility of
better solutions, but provides a score of
1 for that instance; scores are truncated
to four decimal places. Junior teams are
indicated by 𝐽 .

Position Team Score # best solutions

1 gitastrophe𝐽 198.4943 57
2 UNIST 191.7893 120
3 Shadoks 180.4952 0
4 cgi@tau 175.0754 6
5 BlueTeamTechnion𝐽 165.5633 34
6 TUeSWarM𝐽 146.2244 1
7 S10ppy J035𝐽 133.450 1
8 Team ITI𝐽 109.4631 0
9 Kleinkariert𝐽 81.7086 0

10 École Polytechnique𝐽 75.4734 0

Table 13.2.: The top of the final leader-
board for SUM. “Best solutions” are the
best found by any participating team,
which does not exclude the possibility of
better solutions, but provides a score of
1 for that instance; scores are truncated
to four decimal places. Junior teams are
indicated by 𝐽 .

an almost perfect score overall in MAX, which was sufficient to place first
in the sum of both objective functions, at 401.4318. Team UNIST managed
a balanced outcome for both objective functions, for a combined score of
365.8073. Conversely, Team gitastrophe achieved the best score for SUM,
but a slightly inferior result for MAX, resulting in a combined score of
358.0415; at the same time, they also placed first in all three events in the
Junior Class.

These top 3 finishers were invited for contributions in the 2021 SoCG
proceedings, as follows.

1. Team Shadoks: Loïc Crombez, Guilherme D. da Fonseca, Yan
Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourcade, Luc Libra-
lesso [341].

2. Team UNIST: Hyeyun Yang, Antoine Vigneron [342].
3. Team gitastrophe: Jack Spalding-Jamieson, Paul Liu, Brandon

Zhang, Da Wei Zheng [343].

All three teams engineered their solutions based on a spectrum of
heuristics for generating start configurations, in combination of a variety
of local search methods, including simulated annealing, 𝑘-optimization,
and more refined, tailor-made approaches. Details of their methods
and the engineering decisions they made are given in their respective
papers.
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13.4. Conclusions

The 2021 CG:SHOP Challenge motivated a considerable number of
teams to engage in intensive optimization studies. The outcomes promise
further insight into the underlying, important optimization problem.
Moreover, the considerable participation of junior teams indicates that
the Challenge itself motivates a considerable number students and young
researchers to work on practical algorithmic problems.
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École Polytechnique
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objective. Team UNIST is very strong for smaller instances and the SUM objective, but the approach of team gitastrophe seems to scale
better and wins on the larger instances by a significant margin.
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Figure 13.6.: A pair plot of the distribution of our instances according to several important instance properties. # robots describes the
number of robots in the instance, density describes the ratio of occupied positions in the environment (excluding obstacles), unblocked area
describes the ratio of reachable positions within the bounding box, # clusters describes how many groups of robots with similar start and
target locations have been placed by the generator, and clustered robots describes the ratio of robots that belong to a cluster.
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Figure 13.7.: This plot provides some clues for the practical difficulty of instances, indicated by low average scores. Because the scores
are based on the best submitted solution, this implies that some teams with special approaches were able to obtain significantly better
results than the “basic” approach. In the plots, we split the instances into five quantiles, such that the instances with high average score
are shown in red, while darker colors indicate lower average score, i.e., instances considered to be difficult. The most dominant factor
appears to be the number of robots. Because it correlates with many other parameters and the distribution is not fully homogeneous,
considering individual parameters would be highly skewed. We therefore also show combinations of parameters, especially with the
number of robots to counteract the effect that some parameter ranges have on average significantly fewer or more robots. The diagonals
show the distribution of individual parameters; we can see that the easiest instances appear to be the small ones, because the better
quantiles are nearly full. Scatter plots show combinations of two parameters, with every instance shown as one point in the plot. We can
also see that increasing the density without changing the number of robots makes the instances more difficult. Moreover, instances
without obstacles seem to be easier to solve. Due to lack of data, not much can be said for clusters, with difficulty mostly correlating with
the number of robots in the available data points.
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Figure 13.8.: A detailed analysis for MAX instead of SUM; refer to Figure 13.7 for the breakdown into subfigures.
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